Skip to main content

Advertisement

Log in

Internal resonance for nonlinear vibration energy harvesting

  • Regular Article
  • Piezoelectric Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Roundy, P.K. Wright, J. Rabaey, Computer Comm. 26, 1131 (2003)

    Article  Google Scholar 

  2. S.P. Beeby, M.J. Tudor, N. White, Meas. Sci. Technol. 17, R175 (2006)

    Article  Google Scholar 

  3. S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007)

    Article  ADS  Google Scholar 

  4. K. Cook-Chennault, N. Thambi, A. Sastry, Smart Mater. Struct. 17, 043001 (2008)

    Article  ADS  Google Scholar 

  5. N. Elvin, A. Erturk, Advances in energy harvesting methods (Springer Science & Business Media, 2013)

  6. P. Glynne-Jones, et al., Sensors Actuators a-Phys. 110, 344 (2004)

    Article  Google Scholar 

  7. D.P. Arnold, IEEE Trans. Magnet. 43, 3940 (2007)

    Article  ADS  Google Scholar 

  8. S.D. Moss, et al., Smart Mater. Struct. 24, 023001 (2015)

    Article  ADS  Google Scholar 

  9. P.D. Mitcheson, et al., Sensors Actuators a-Phys. 115, 523 (2004)

    Article  Google Scholar 

  10. C.P. Le, et al., J. Int. Mat. Syst. Struct. 23, 1409 (2012)

    Article  Google Scholar 

  11. S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)

    Article  ADS  Google Scholar 

  12. N.E. DuToit, B.L. Wardle, AIAA J. 45, 1126 (2007)

    Article  ADS  Google Scholar 

  13. A. Erturk, D.J. Inman, Smart Mater. Struct. 18 (2009)

  14. S. Adhikari, M. Friswell, D. Inman, Smart Mater. Struct. 18, 115005 (2009)

    Article  ADS  Google Scholar 

  15. L. Wang, F.G. Yuan, Smart Mater. Struct. 17 (2008)

  16. A. Adly, et al., J. Appl. Phys. 107 (2010)

  17. R.D. Kornbluh, et al., From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. in SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, 2011)

  18. M. Aureli, et al., Smart Mater. Struct. 19, 015003 (2010)

    Article  ADS  Google Scholar 

  19. S. Anton, K. Farinholt, A. Erturk, J. Int. Mat. Syst. Struct., 1045389X14541501 (2014)

  20. Q. Deng, et al., Int. J. Solids Struct. 51, 3218 (2014)

    Article  Google Scholar 

  21. A. Erturk, D.J. Inman, Piezoelectric energy harvesting (John Wiley & Sons, 2011)

  22. L. Tang, Y. Yang, C.K. Soh, J. Intel. Mat. Syst. Struct. 21, 1867 (2010)

    Article  Google Scholar 

  23. S.P. Pellegrini, et al., J. Int. Mat. Syst. Struct., 1045389X12444940 (2012)

  24. J. Twiefel, H. Westermann, J. Int. Mat. Syst. Struct. 24, 1291 (2013)

    Article  Google Scholar 

  25. R. Harne, K. Wang, Smart Mat. Struct. 22, 023001 (2013)

    Article  ADS  Google Scholar 

  26. M.F. Daqaq, et al., Appl. Mechan. Rev. 66, 040801 (2014)

    Article  ADS  Google Scholar 

  27. I.-H. Kim, et al., Appl. Phys. Lett. 98, 214102 (2011)

    Article  ADS  Google Scholar 

  28. X. Tang, L. Zuo, J. Sound Vibr. 330, 5199 (2011)

    Article  ADS  Google Scholar 

  29. O. Aldraihem, A. Baz, J. Int. Mat. Syst. Struct., 1045389X11402706 (2011)

  30. A. Aladwani, et al., J. Vibr. Acoust. 134, 031004 (2012)

    Article  Google Scholar 

  31. H. Wu, et al., J. Int. Mat. Syst. Struct., 1045389X12457254 (2012)

  32. B. Mann, N. Sims, J. Sound Vibr. 319, 515 (2009)

    Article  ADS  Google Scholar 

  33. R. Ramlan, et al., Nonlinear Dyn. 59, 545 (2010)

    Article  MATH  Google Scholar 

  34. D.A. Barton, S.G. Burrow, L.R. Clare, J. Vibr. Acoust. 132, 021009 (2010)

    Article  Google Scholar 

  35. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94 (2009)

  36. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  37. G. Litak, M. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  38. A. Arrieta, et al., Appl. Phys. Lett. 97, 104102 (2010)

    Article  ADS  Google Scholar 

  39. S.D. Nguyen, E. Halvorsen, I. Paprotny, Appl. Phys. Lett. 102, 023904-023904-4 (2013)

    ADS  Google Scholar 

  40. E. Halvorsen, Phys. Rev. E 87, 042129 (2013)

    Article  ADS  Google Scholar 

  41. S. Zhao, A. Erturk, Appl. Phys. Lett. 102, 103902 (2013)

    Article  ADS  Google Scholar 

  42. R. Harne, M. Thota, K. Wang, Smart Mat. Struct. 22, 125028 (2013)

    Article  ADS  Google Scholar 

  43. L. Tang, Y. Yang, Appl. Phys. Lett. 101, 094102 (2012)

    Article  ADS  Google Scholar 

  44. A. Haddow, A. Barr, D. Mook, J. Sound Vibr. 97, 451 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  45. L.-Q. Chen, W.-A. Jiang, J. Appl. Mechan. 82, 031004 (2015)

    Article  ADS  Google Scholar 

  46. A. Erturk, J.M. Renno, D.J. Inman, J. Int. Mat. Syst. Struct. 20, 529 (2009)

    Article  Google Scholar 

  47. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (John Wiley & Sons, 2008)

  48. S. Leadenham, A. Erturk, Smart Mat. Struct. 24, 055021 (2015)

    Article  ADS  Google Scholar 

  49. A.H. Nayfeh, D.T. Mook, L.R. Marshall, J. Hydronautics 7, 145 (1973)

    Article  Google Scholar 

  50. B. Balachandran, A. Nayfeh, Nonlinear Dyn. 2, 77 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Erturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Leadenham, S. & Erturk, A. Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015). https://doi.org/10.1140/epjst/e2015-02594-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02594-4

Navigation