Skip to main content
Log in

First-principles study of ultrafast bandgap dynamics in laser-excited \(\alpha\)-quartz

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Femtosecond-laser-induced evolution of \(\alpha\)-quartz bandgap was calculated using first principles. First, time-dependent density functional theory (TDDFT) was used to describe excited electron dynamics during the laser pulse irradiation. Then, the temperature of excited electrons was estimated using finite-temperature DFT. Finally, the GW approximation was applied to calculate the electronic structure modification driven by hot electrons. As a result, an ultrafast decrease of the bandgap is observed during a 15-fs laser pulse with a drop of 35 % at laser intensities near the damage threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J.V. Barth, R. Kienberger, R. Ernstorfer, V.S. Yakovlev, M.I. Stockman, F. Krausz, Optical-field-induced current in dielectrics. Nature 493(7430), 70 (2013)

    Article  ADS  Google Scholar 

  2. T. Winkler, L. Haahr-Lillevang, C. Sarpe, B. Zielinski, N. Götte, A. Senftleben, P. Balling, T. Baumert, Laser amplification in excited dielectrics. Nat. Phys. 14(1), 74 (2018)

    Article  Google Scholar 

  3. R. Stoian, Volume photoinscription of glasses: three-dimensional micro- and nanostructuring with ultrashort laser pulses. Appl. Phys. A 126(6), 438 (2020)

    Article  ADS  Google Scholar 

  4. S.Y. Kruchinin, F. Krausz, V.S. Yakovlev, Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90(2), 021002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965)

    Google Scholar 

  6. V.E. Gruzdev, Photoionization rate in wide band-gap crystals. Phys. Rev. B 75(20), 205106 (2007)

    Article  ADS  Google Scholar 

  7. B. Rethfeld, Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92(18), 187401 (2004)

    Article  ADS  Google Scholar 

  8. M. Schultze, K. Ramasesha, C.D. Pemmaraju, S.A. Sato, D. Whitmore, A. Gandman, J.S. Prell, L.J. Borja, D. Prendergast, K. Yabana, D.M. Neumark, S.R. Leone, Attosecond band-gap dynamics in silicon. Science 346(6215), 1348 (2014)

    Article  ADS  Google Scholar 

  9. S.V. Faleev, M. van Schilfgaarde, T. Kotani, F. Léonard, M.P. Desjarlais, Finite-temperature quasiparticle self-consistent GW approximation. Phys. Rev. B 74(3), 033101 (2006)

    Article  ADS  Google Scholar 

  10. M. Noda, S.A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Yamada, A. Yamada, Y. Shinohara, M. Yamaguchi, K. Iida, I. Floss, T. Otobe, K.-M. Lee, K. Ishimura, T. Boku, G.F. Bertsch, K. Nobusada, K. Yabana, SALMON: scalable Ab-initio light-matter simulator for optics and nanoscience. Comput. Phys. Commun. 235, 356 (2019)

    Article  ADS  Google Scholar 

  11. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  Google Scholar 

  12. K.-M. Lee, C.M. Kim, S.A. Sato, T. Otobe, Y. Shinohara, K. Yabana, T.M. Jeong, First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse. J. Appl. Phys. 115(5), 053519 (2014)

    Article  ADS  Google Scholar 

  13. N. Brouwer, B. Rethfeld, Transient electron excitation and nonthermal electron-phonon coupling in dielectrics irradiated by ultrashort laser pulses. Phys. Rev. B 95(24), 245139 (2017)

    Article  ADS  Google Scholar 

  14. S.A. Sato, Y. Shinohara, T. Otobe, K. Yabana, Dielectric response of laser-excited silicon at finite electron temperature. Phys. Rev. B 90(17), 174303 (2014)

    Article  ADS  Google Scholar 

  15. E.P. Silaeva, E. Bevillon, R. Stoian, J.P. Colombier, Ultrafast electron dynamics and orbital-dependent thermalization in photoexcited metals. Phys. Rev. B 98(9), 094306 (2018)

    Article  ADS  Google Scholar 

  16. R.J. Van Overstraeten, R.P. Mertens, Heavy doping effects in silicon. Solid-State Electron. 30(11), 1077 (1987)

    Article  ADS  Google Scholar 

  17. T. Nagai, T.J. Inagaki, Y. Kanemitsu, Band-gap renormalization in highly excited GaN. Appl. Phys. Lett. 84(8), 1284 (2004)

    Article  ADS  Google Scholar 

  18. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: first-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180(12), 2582 (2009)

    Article  ADS  Google Scholar 

  19. A. Oschlies, R.W. Godby, R.J. Needs, GW self-energy calculations of carrier-induced band-gap narrowing in n-type silicon. Phys. Rev. B 51(3), 1527 (1995)

    Article  ADS  Google Scholar 

  20. L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, M.J. Caldas, Unraveling effects of disorder on the electronic structure of SiO2 from first principles. Phys. Rev. B 81(8), 081202 (2010)

    Article  ADS  Google Scholar 

  21. G. Kresse, M. Marsman, L.E. Hintzsche, E. Flage-Larsen, Optical and electronic properties of Si3N4 and α-sio2. Phys. Rev. B 85(4), 045205 (2012)

    Article  ADS  Google Scholar 

  22. A. Yamada, K. Yabana, Energy transfer from intense laser pulse to dielectrics in time-dependent density functional theory. Eur. Phys. J. D 73(5), 87 (2019)

    Article  ADS  Google Scholar 

  23. B. Bauerhenne, M.E. Garcia, Universal behavior of the band gap as a function of the atomic mean-square displacement in laser-excited silicon. Adv. Opt. Technol. 9(3), 145 (2020)

    Article  ADS  Google Scholar 

  24. A. Tsaturyan, E. Kachan, R. Stoian, J.-P. Colombier, Ultrafast bandgap narrowing and cohesion loss of photoexcited fused silica. J. Chem. Phys. 156(22), 224301 (2022)

    Article  ADS  Google Scholar 

  25. T.J.-Y. Derrien, N. Tancogne-Dejean, V.P. Zhukov, H. Appel, A. Rubio, N.M. Bulgakova, Photoionization and transient Wannier–Stark ladder in silicon: first-principles simulations versus Keldysh theory. Phys. Rev. B 104(24), 241201 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The numerical calculations were performed using computer resources from GENCI, project gen7041.

Funding

The work was funded by IDEXLYON project of the University of Lyon within the program “Investissements d’Avenir”(ANR-16-IDEX-0005) and INTRALAS project (ANR-19-CE30-0036) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Kachan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachan, E., Tsaturyan, A., Stoian, R. et al. First-principles study of ultrafast bandgap dynamics in laser-excited \(\alpha\)-quartz. Eur. Phys. J. Spec. Top. 232, 2241–2245 (2023). https://doi.org/10.1140/epjs/s11734-022-00747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00747-8

Navigation