Skip to main content
Log in

Taguchi optimization of automotive radiator cooling with nanofluids

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Considering the influences of the heat transfer rate in automotive radiators on several aspects such as engine performance, fuel economy and available space for components, the present study numerically investigates the impacts of different nanofluids on the heat transfer and pressure drop in an automotive radiator. Four different parameters each having four levels are taken into consideration, which are nanoparticle volume fraction (\(\phi =0.1, 0.3, 0.7\), and 1%), Reynolds number (Re \(=\) 9350, 13,800, 18,500 and 23,000), type of base fluid (EG20, EG40, EG60, and water) and type of nanoparticle (\(\hbox {Fe}_{3}\hbox {O}_{4}\), CuO, \(\hbox {Al}_{2}\hbox {O}_{3}\), and \(\hbox {SiO}_{2})\). Taguchi method is employed for reducing the number of parameter combinations from 256 to 16. It is found that the nanofluid utilization improves heat transfer between 3.2 and 45.9% depending on the combination of the investigated parameters. Pressure drop is noticeably increased due to nanofluid utilization. Regarding the Taguchi optimization, using \(\hbox {Fe}_{3}\hbox {O}_{4}\)–water nanofluid with 0.3% volume fraction at Re \(=\) 9350 is the most appropriate option for a high heat transfer with relatively low pressure drop. It is concluded that the radiator size can be reduced by 10.8% by using nanofluids due to the improvement in heat transfer, which consequently allow a larger space to designers for placing other components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of the tube (\(\hbox {m}^{2}\))

\(C_\mathrm{f}\) :

Skin friction

\(C_\mathrm{p}\) :

Specific heat capacity (J/kg K)

\(D_\mathrm{h}\) :

Hydraulic diameter of the tube (m)

\(d_\mathrm{p}\) :

Nanoparticle diameter (m)

EG:

Ethylene glycol

h :

Convective heat transfer coefficient (W/m\(^{2}\) K)

k :

Thermal conductivity (W/m K)

\(K_\mathrm{B}\) :

Boltzmann constant (J/K)

l :

Tube length (m)

V :

Average velocity (m/s)

Nu :

Average Nusselt number

P :

Pressure (Pa)

Pr:

Prandtl number (\(\upmu \)C\(_\mathrm{p}/k\))

\(P_\mathrm{t}\) :

Tube periphery (m)

Re :

Reynolds number

W :

Pumping power (W)

\(\eta \) :

Effectiveness value

\(\mu \) :

Viscosity (kg/m s)

\(\rho \) :

Density (\(\hbox {kg}/\hbox {m}^{3}\))

\(\tau \) :

Fluid shear force (N)

\(\varphi \) :

Shape factor

\(\phi \) :

Nanoparticle volume fraction (%)

bf:

Base fluid

p:

Particle

nf:

Nanofluid

References

  1. F. Abbas, H.M. Ali, T.R. Shah, H. Babar, M.M. Janjua, U. Sajjad, M. Amer, Nanofluid: potential evaluation in automotive radiator. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2019.112014

    Article  Google Scholar 

  2. M. Sankar, Numerical study of double diffusive convection in partially heated vertical open ended cylindrical annulus. Adv. Appl. Math. Mech. 2, 763–783 (2010). https://doi.org/10.4208/aamm.09-m0997

    Article  MathSciNet  Google Scholar 

  3. A. Shahsavar, P. Jha, M. Arici, G. Kefayati, A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors. Energy. 220, 119714 (2021). https://doi.org/10.1016/j.energy.2020.119714

    Article  Google Scholar 

  4. M. Jurčević, S. Nižetić, M. Arıcı, P. Ocłoń, Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. J. Clean. Prod. 274, 122963 (2020). https://doi.org/10.1016/J.JCLEPRO.2020.122963

    Article  Google Scholar 

  5. M. Sankar, M. Venkatachalappa, I.S. Shivakumara, Effect of magnetic field on natural convection in a vertical cylindrical annulus. Int. J. Eng. Sci. 44, 1556–1570 (2006). https://doi.org/10.1016/j.ijengsci.2006.06.004

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Zhao, S. Li, J. Yang, A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator. Renew. Sustain. Energy Rev. 66, 596–616 (2016). https://doi.org/10.1016/j.rser.2016.08.029

    Article  Google Scholar 

  7. A. Kumar, S. Subudhi, Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Appl. Therm. Eng. (2019). https://doi.org/10.1016/j.applthermaleng.2019.114092

    Article  Google Scholar 

  8. Z. Said, M. El Haj Assad, A.A. Hachicha, E. Bellos, M.A. Abdelkareem, D.Z. Alazaizeh, B.A.A. Yousef, Enhancing the performance of automotive radiators using nanofluids. Renew. Sustain. Energy Rev. 112, 183–194 (2019). https://doi.org/10.1016/j.rser.2019.05.052

    Article  Google Scholar 

  9. N.A.C. Sidik, M.N.A.W.M. Yazid, R. Mamat, Recent advancement of nanofluids in engine cooling system. Renew. Sustain. Energy Rev. 75, 137–144 (2017). https://doi.org/10.1016/j.rser.2016.10.057

    Article  Google Scholar 

  10. M.B. Bigdeli, M. Fasano, A. Cardellini, E. Chiavazzo, P. Asinari, A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Renew. Sustain. Energy Rev. 60, 1615–1633 (2016). https://doi.org/10.1016/j.rser.2016.03.027

    Article  Google Scholar 

  11. N. Arora, M. Gupta, An updated review on application of nanofluids in flat tubes radiators for improving cooling performance. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2020.110242

    Article  Google Scholar 

  12. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Dev. ed. by D.A. Siginer, H.P. Wang (Appl Non-Newtonian Flows, New York, 1995), pp. 99–105

    Google Scholar 

  13. M. Sankar, N.K. Reddy, Y. Do, Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry. Sci. Rep. 11, 1–22 (2021). https://doi.org/10.1038/s41598-021-96456-8

    Article  ADS  Google Scholar 

  14. S. Umer Ilyas, R. Pendyala, M. Narahari, Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J. Therm. Anal. Calorim. 135, 1197–1209 (2019). https://doi.org/10.1007/s10973-018-7546-7

    Article  Google Scholar 

  15. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003). https://doi.org/10.1016/S0017-9310(03)00156-X

    Article  MATH  Google Scholar 

  16. M.K. Abdolbaqi, C.S.N. Azwadi, R. Mamat, Heat transfer augmentation in the straight channel by using nanofluids. Case Stud. Therm. Eng. 3, 59–67 (2014). https://doi.org/10.1016/j.csite.2014.04.001

    Article  Google Scholar 

  17. N. Hazeri-Mahmel, Y. Shekari, A. Tayebi, Three-dimensional analysis of forced convection of Newtonian and non-Newtonian nanofluids through a horizontal pipe using single- and two-phase models. Int. Commun. Heat Mass Transf. 121, 105119 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105119

    Article  Google Scholar 

  18. H. Chen, X. Chen, Y. Wu, Y. Lu, X. Wang, C. Ma, Experimental study on forced convection heat transfer of KNO3-Ca(NO3)2 \(+\) SiO2 molten salt nanofluid in circular tube. Sol. Energy. 206, 900–906 (2020). https://doi.org/10.1016/j.solener.2020.06.061

    Article  ADS  Google Scholar 

  19. H. Khorasanizadeh, M. Nikfar, J. Amani, Entropy generation of Cu-water nanofluid mixed convection in a cavity. Eur. J. Mech. B/Fluids. 37, 143–152 (2013). https://doi.org/10.1016/j.euromechflu.2012.09.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. F.Z. Bakhti, M. Si-Ameur, A comparison of mixed convective heat transfer performance of nanofluids cooled heat sink with circular perforated pin fin. Appl. Therm. Eng. 159, 113819 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113819

    Article  Google Scholar 

  21. M. Awais, N. Ullah, J. Ahmad, F. Sikandar, M.M. Ehsan, S. Salehin, A.A. Bhuiyan, Heat transfer and pressure drop performance of nanofluid: a state-of- the-art review. Int. J. Thermofluids. (2021). https://doi.org/10.1016/j.ijft.2021.100065

    Article  Google Scholar 

  22. M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. 74, 638–670 (2017). https://doi.org/10.1016/j.rser.2017.02.073

    Article  Google Scholar 

  23. M.U. Sajid, H.M. Ali, Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Transf. 126, 211–234 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021

    Article  Google Scholar 

  24. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  25. O.A. Alawi, N.A.C. Sidik, H.W. Xian, T.H. Kean, S.N. Kazi, Thermal conductivity and viscosity models of metallic oxides nanofluids. Int. J. Heat Mass Transf. 116, 1314–1325 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.133

    Article  Google Scholar 

  26. K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl. Therm. Eng. 30, 2685–2692 (2010). https://doi.org/10.1016/j.applthermaleng.2010.07.019

    Article  Google Scholar 

  27. R.S. Vajjha, D.K. Das, P.K. Namburu, Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int. J. Heat Fluid Flow. 31, 613–621 (2010). https://doi.org/10.1016/j.ijheatfluidflow.2010.02.016

    Article  Google Scholar 

  28. S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M.S. Jamnani, Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int. Commun. Heat Mass Transf. 38, 1283–1290 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001

    Article  Google Scholar 

  29. S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Y. Vermahmoudi, Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl. Therm. Eng. 52, 8–16 (2013). https://doi.org/10.1016/j.applthermaleng.2012.11.013

    Article  Google Scholar 

  30. G. Huminic, A. Huminic, Numerical analysis of laminar flow heat transfer of nanofluids in a flattened tube. Int. Commun. Heat Mass Transf. 44, 52–57 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.03.003

    Article  MATH  Google Scholar 

  31. A.M. Hussein, R.A. Bakar, K. Kadirgama, K.V. Sharma, Heat transfer augmentation of a car radiator using nanofluids. Heat Mass Transf. Und Stoffuebertragung. 50, 1553–1561 (2014). https://doi.org/10.1007/s00231-014-1369-2

    Article  ADS  Google Scholar 

  32. A.M. Hussein, R.A. Bakar, K. Kadirgama, Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud. Therm. Eng. 2, 50–61 (2014). https://doi.org/10.1016/j.csite.2013.12.001

    Article  Google Scholar 

  33. V. Delavari, S.H. Hashemabadi, CFD simulation of heat transfer enhancement of Al 2 O 3 /water and Al 2 O 3 /ethylene glycol nanofluids in a car radiator. Appl. Therm. Eng. 73, 380–390 (2014). https://doi.org/10.1016/j.applthermaleng.2014.07.061

    Article  Google Scholar 

  34. A. Amiri, R. Sadri, M. Shanbedi, G. Ahmadi, S.N. Kazi, B.T. Chew, M.N.M. Zubir, Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers. Manag. 101, 767–777 (2015). https://doi.org/10.1016/j.enconman.2015.06.019

    Article  Google Scholar 

  35. G.A. Oliveira, E.M.C. Contreras, E.P.B. Filho, Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator. Appl. Therm. Eng. 111, 1450–1456 (2017). https://doi.org/10.1016/j.applthermaleng.2016.05.086

    Article  Google Scholar 

  36. A.S. Tijani, A.S.B. Sudirman, Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. Int. J. Heat Mass Transf. 118, 48–57 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.083

    Article  Google Scholar 

  37. A. Kumar, M.A. Hassan, P. Chand, Heat transport in nanofluid coolant car radiator with louvered fins. Powder Technol. 376, 631–642 (2020). https://doi.org/10.1016/j.powtec.2020.08.047

    Article  Google Scholar 

  38. F. Abbas, H.M. Ali, M. Shaban, M.M. Janjua, T.R. Shah, M.H. Doranehgard, M. Ahmadlouydarab, F. Farukh, Towards convective heat transfer optimization in aluminum tube automotive radiators: potential assessment of novel Fe2O3-TiO2/water hybrid nanofluid. J. Taiwan Inst. Chem. Eng. 124, 424–436 (2021). https://doi.org/10.1016/j.jtice.2021.02.002

    Article  Google Scholar 

  39. X. Li, H. Wang, B. Luo, The thermophysical properties and enhanced heat transfer performance of SiC-MWCNTs hybrid nanofluids for car radiator system. Colloids Surf. A Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2020.125968

    Article  Google Scholar 

  40. M.B. Hafeez, R. Amin, K.S. Nisar, W. Jamshed, A.H. Abdel-Aty, M.M. Khashan, Heat transfer enhancement through nanofluids with applications in automobile radiator. Case Stud. Therm. Eng. (2021). https://doi.org/10.1016/j.csite.2021.101192

    Article  Google Scholar 

  41. K.R. Aglawe, R.K. Yadav, S.B. Thool, Preparation, applications and challenges of nanofluids in electronic cooling: a systematic review. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.679

    Article  Google Scholar 

  42. M. Sheikholeslami, S.A. Farshad, Z. Ebrahimpour, Z. Said, Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.126119

    Article  Google Scholar 

  43. O. Ogunleye, R.M. Singh, F. Cecinato, Assessing the thermal efficiency of energy tunnels using numerical methods and Taguchi statistical approach. Appl. Therm. Eng. 185, 116377 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116377

    Article  Google Scholar 

  44. J. Alinejad, K. Fallah, Taguchi optimization approach for three-dimensional nanofluid natural convection in a transformable enclosure. J. Thermophys. Heat Transf. 31, 211–217 (2017). https://doi.org/10.2514/1.T4894

    Article  Google Scholar 

  45. A. Kazemian, A. Parcheforosh, A. Salari, T. Ma, Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis. Sol. Energy. 215, 492–507 (2021). https://doi.org/10.1016/j.solener.2021.01.006

    Article  ADS  Google Scholar 

  46. T. Dagdevir, V. Ozceyhan, Optimization of process parameters in terms of stabilization and thermal conductivity on water based TiO2 nanofluid preparation by using Taguchi method and Grey relation analysis. Int. Commun. Heat Mass Transf. 120, 105047 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105047

    Article  Google Scholar 

  47. S. Maghsoodloo, G. Ozdemir, V. Jordan, C.H. Huang, Strengths and limitations of taguchi’s contributions to quality, manufacturing, and process engineering. J. Manuf. Syst. 23, 73–126 (2004). https://doi.org/10.1016/S0278-6125(05)00004-X

    Article  Google Scholar 

  48. R. Pundir, G.H.V.C. Chary, M.G. Dastidar, Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resour. Ind. 20, 83–92 (2018). https://doi.org/10.1016/j.wri.2016.05.001

    Article  Google Scholar 

  49. M. Sheikholeslami, R. Ellahi, K. Vafai, Study of Fe3O4-water nanofluid with convective heat transfer in the presence of magnetic source. Alexandria Eng. J. 57, 565–575 (2018). https://doi.org/10.1016/j.aej.2017.01.027

    Article  Google Scholar 

  50. H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow. 29, 1326–1336 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

    Article  Google Scholar 

  51. R.S. Vajjha, D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int. J. Heat Mass Transf. 55, 4063–4078 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048

    Article  Google Scholar 

  52. R. Davarnejad, M. Jamshidzadeh, CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow. Eng. Sci. Technol. Int. J. 18, 536–542 (2015). https://doi.org/10.1016/j.jestch.2015.03.011

    Article  Google Scholar 

  53. L. Syam Sundar, E. Venkata Ramana, M.K. Singh, A.C.M. De Sousa, Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem. Phys. Lett. 554, 236–242 (2012). https://doi.org/10.1016/j.cplett.2012.10.042

    Article  ADS  Google Scholar 

  54. K.V. Sharma, S.K. Vandrangi, K. Habib, S. Kamal, Influence of ethylene glycol and water mixture ratio on Al\(_2\)O\(_3\) nanofluid turbulent forced convection heat transfer. Int. J. Sci. Eng. Res. 7, 124–132 (2016)

    Google Scholar 

  55. B.-X. Wang, L.-P. Zhou, X.-F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665–2672 (2003). https://doi.org/10.1016/S0017-9310(03)00016-4

    Article  MATH  Google Scholar 

  56. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52, 789–793 (2011). https://doi.org/10.1016/j.enconman.2010.06.072

    Article  Google Scholar 

  57. N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids. J. Phys. D. Appl. Phys. 42, 055501 (2009). https://doi.org/10.1088/0022-3727/42/5/055501

    Article  ADS  Google Scholar 

  58. Ç. Yıldız, M. Arıcı, S. Nižetić, A. Shahsavar, Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins. Energy (2020). https://doi.org/10.1016/j.energy.2020.118223

    Article  Google Scholar 

  59. F. Moukalled, L. Mangani, M. Darwish, The finite volume method in computational fluid dynamics (2016)

  60. V. Gnielinski, Wärmeübertragung bei der Strömung durch Rohre. In: VDI-Wärmeatlas. Springer, Berlin, pp 593–648 (2002). https://doi.org/10.1007/978-3-662-10743-0_7

  61. M.W. Weiser, Taguchi method of experimental design in materials education. In: NASA Conf. Publ. 3201 Natl. Educ. Work. Updat. 92 Stand. Exp. Eng. Mater. Sci. Technol. (1993)

  62. S.S. Pungaiah, C.K. Kailasanathan, Thermal analysis and optimization of nano coated radiator tubes using computational fluid dynamics and Taguchi method. Coatings (2020). https://doi.org/10.3390/COATINGS10090804

    Article  Google Scholar 

  63. A. Razak Kaladgi, A. Afzal, A.M. Manokar, D. Thakur, U. Agbulut, S. Alshahrani, A. C. Saleel, R. Subbiah, Integrated Taguchi-GRA-RSM optimization and ANN modelling of thermal performance of zinc oxide nanofluids in an automobile radiator. Case Stud. Therm. Eng. (2021). https://doi.org/10.1016/j.csite.2021.101068

  64. M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int. J. Therm. Sci. 66, 82–90 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.11.013

    Article  Google Scholar 

  65. C. Ekincioğlu, S. Boran, SMED methodology based on fuzzy Taguchi method. J. Enterp. Inf. Manag. 31, 867–878 (2018). https://doi.org/10.1108/JEIM-01-2017-0019

  66. H.-H. Ting, S.-S. Hou, Numerical study of laminar flow and convective heat transfer utilizing nanofluids in equilateral triangular ducts with constant heat flux. Materials (Basel). 9, 576 (2016). https://doi.org/10.3390/ma9070576

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müslüm Arıcı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, Ç., Kaptan, Ç., Arıcı, M. et al. Taguchi optimization of automotive radiator cooling with nanofluids. Eur. Phys. J. Spec. Top. 231, 2801–2819 (2022). https://doi.org/10.1140/epjs/s11734-022-00597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00597-4

Navigation