Skip to main content

Advertisement

Log in

Assessing the effects of treatment in HIV-TB co-infection model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We propose a population model for HIV-TB co-infection dynamics by considering treatments for HIV infection, active tuberculosis and co-infection. The HIV-only and TB-only models are analyzed separately, as well as full model. The basic reproduction numbers for TB ( \( {R}_0^T\) and HIV ( \( {R}_0^H\) and overall reproduction number for the system \( {R}_0= \max\{{R}_0^T, {R}_0^H\}\) are computed. The equilibria and their stability are studied. The main model undergoes supercritical transcritical bifurcation at \( {R}_0^T=1\) and \( {R}_0^H=1\) , whereas the parameters \( \beta^{\ast}=\beta e\) and \( \lambda^{\ast}=\lambda \sigma\) act as bifurcation parameters, respectively. Numerical simulation claims the existence of interior equilibrium when both the reproduction numbers are greater than unity. We explore the effect of early and late HIV treatment on disease-induced deaths during the TB treatment course. Mathematical analysis of our model shows that successful disease eradication requires treatment of single disease, that is, treatment for HIV-only- and TB-only-infected individuals with addition to co-infection treatment and in the absence of which disease eradication is extremely difficult even for R < 0. When both the diseases are epidemic, the treatment for TB-only-infected individuals is very effective in reducing the total infected population and disease-induced deaths in comparison with the treatment for HIV-infected individuals while these are minimum when both the single-disease treatments are given with co-infection treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TBFACTS.ORG, https://www.tbfacts.org/tb-statistics/

  2. World Health Organisation, http://www.who.int/mediacentre/factsheets/fs104/en/

  3. TBFACTS.ORG, https://www.tbfacts.org/tb-treatment/

  4. World Health Organisation, http://www.who.int/mediacentre/factsheets/fs360/en/

  5. De Cock, M. Kevin, R.E. Chaisson, Int. J. Tuberculosis Lung Disease 3, 457 (1999)

    Google Scholar 

  6. G. Guzzetta et al., J. Theoret. Biol. 289, 197 (2011)

    Article  MathSciNet  Google Scholar 

  7. J.M. Trauer, J.T. Denholm, E.S. McBryde, J. Theor. Biol. 358, 74 (2014)

    Article  Google Scholar 

  8. E.F. Long, N.K. Vaidya, M.L. Brandeau, Oper. Res. 56, 1366 (2008)

    Article  MathSciNet  Google Scholar 

  9. L.-I.W. Roeger, Z. Feng, C. Castillo-Chavez, Math. Biosci. Eng. 6, 815 (2009)

    Article  MathSciNet  Google Scholar 

  10. C.J. Silva, D.F.M. Torres, Dyn. Syst. 35, 4639 (2015)

    Google Scholar 

  11. C.P. Bhunu, W. Garira, Z. Mukandavire, Bull. Math. Biol. 71, 1745 (2009)

    Article  MathSciNet  Google Scholar 

  12. R. Naresh, D. Sharma, A. Tripathi, Math. Comput. Modell. 50, 1154 (2009)

    Article  Google Scholar 

  13. S. Gakkhar, N. Chavda, Appl. Math. Comput. 218, 9261 (2012)

    MathSciNet  Google Scholar 

  14. N. Kaur, M. Ghosh, S.S. Bhatia, J. Adv. Res. Dyn. Control Syst. 7, 66 (2015)

    MathSciNet  Google Scholar 

  15. A. Mallela, S. Lenhart, N.K. Vaidya, J. Comput. Appl. Math. 307, 143 (2016)

    Article  MathSciNet  Google Scholar 

  16. M.M. Bosma-den Boer, M.L. van Wetten, L. Pruimboom, Nutr. Metab. 9, 32 (2012)

    Article  Google Scholar 

  17. K.A. Sepkowitz, Clin. Infect. Diseases 23, 954 (1996)

    Article  Google Scholar 

  18. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, J. Math. Biol. 28, 365 (1990)

    Article  MathSciNet  Google Scholar 

  19. O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, J. R. Soc. Interface 7, 873 (2010)

    Article  Google Scholar 

  20. J.H. Jones, Notes on $\mathcal{R}_0$, http://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf

  21. L. Perko, Differential equations and dynamical systems, third edition, Texts in Applied Mathematics, Vol. 7 (Springer-Verlag, New York, 2001)

  22. C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of $\mathscr{R}_0$ and its role on global stability, in Mathematical approaches for emerging and reemerging infectious diseases: an introduction (Minneapolis, MN, 1999), IMA Vol. Math. Appl., Vol. 125 (Springer, New York, 2002) pp. 229--250

  23. C. Castillo-Chavez, B. Song, Math. Biosci. Eng. 1, 361 (2004)

    Article  MathSciNet  Google Scholar 

  24. TBFACTS.ORG, https://www.tbfacts.org/tb-hiv/

  25. World Health Organisation, http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en/

  26. C. Castillo-Chavez, Z. Feng, J. Math. Biol. 35, 629 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jain, S. Assessing the effects of treatment in HIV-TB co-infection model. Eur. Phys. J. Plus 133, 294 (2018). https://doi.org/10.1140/epjp/i2018-12117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12117-8

Navigation