Skip to main content
Log in

A general formulation for the magnetic oscillations in two dimensional systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We develop a general formalism for the magnetic oscillations (MO) in two dimensional (2D) systems. We consider general 2D Landau levels, which may depend on other variable or indices, besides the perpendicular magnetic field. In the ground state, we obtain expressions for the MO phase and amplitude. From this we use a Fourier expansion to write the MO, with the first term being a sawtooth oscillation. We also consider the effects of finite temperature, impurities or lattice imperfections, assuming a general broadening of the Landau levels. We develop two methods for describing these damping effects in the MO. One in terms of the occupancy of the Landau levels, the other in terms of reduction factors, which results in a generalization of the Lifshits-Kosevich (LK) formula. We show that the first approach is particularly useful at very low damping, when only the states close to the Fermi energy are excited. In contrast, the LK formula may be more convenient at higher damping, when only few terms are needed in its harmonic expansion. We compare different damping situations, showing how the MO are broadened in each case. The general formulation presented allows to relate the properties of the MO with those of the 2D systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. De Haas, P. Van Alphen, Leiden Commun. 208, 212a (1930)

    Google Scholar 

  2. L. Landau, Z. Phys. 64, 629 (1930)

    ADS  Google Scholar 

  3. L. Onsager, Philos. Mag. J. Sci. 43, 1006 (1952)

    Google Scholar 

  4. F. Escudero, J. Ardenghi, P. Jasen, J. Magn. Magn. Mater. 454, 131 (2018)

    Google Scholar 

  5. F. Escudero, L. Sourrouille, J. Ardenghi, P. Jasen, Superlatt. Microstruct. 101, 537 (2017)

    ADS  Google Scholar 

  6. Z. Lin et al., 2D Materials 3, 042001 (2016)

    Google Scholar 

  7. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, Nanoscale 3, 20 (2011)

    ADS  Google Scholar 

  8. A. Gupta, T. Sakthivel, S. Seal, Progr. Mater. Sci. 73, 44 (2015)

    Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    ADS  Google Scholar 

  10. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  11. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)

    ADS  Google Scholar 

  12. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  13. J. Zhuang, X. Xu, H. Feng, Z. Li, X. Wang, Y. Du, Sci. Bull. 60, 1551 (2015)

    Google Scholar 

  14. J. Zhao et al., Prog. Mater. Sci. 83, 24 (2016)

    Google Scholar 

  15. Silicene, edited by M.J. Spencer (Springer International Publishing, 2016)

  16. M. Houssa, A. Dimoulas, A. Molle, J. Phys.: Condens. Matter 27, 253002 (2015)

    ADS  Google Scholar 

  17. A. Acun et al., J. Phys.: Condens. Matter 27, 443002 (2015)

    Google Scholar 

  18. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Small 11, 640 (2014)

    Google Scholar 

  19. M. Ezawa, J. Phys. Soc. Jpn. 84, 121003 (2015)

    ADS  Google Scholar 

  20. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012)

    ADS  Google Scholar 

  21. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 12, 113 (2011)

    ADS  Google Scholar 

  22. J.A. Yan, S.P. Gao, R. Stein, G. Coard, Phys. Rev. B 91, 245403 (2015)

    ADS  Google Scholar 

  23. C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)

    ADS  Google Scholar 

  24. L. Kou, Y. Ma, Z. Sun, T. Heine, C. Chen, J. Phys. Chem. Lett. 8, 1905 (2017)

    Google Scholar 

  25. M. Tahir, U. Schwingenschlögl, Sci. Rep. 3, 1075 (2013)

    ADS  Google Scholar 

  26. C. Huang, J. Zhou, H. Wu, K. Deng, P. Jena, E. Kan, J. Phys. Chem. Lett. 7, 1919 (2016)

    Google Scholar 

  27. C.H. Hsu et al., Phys. Rev. B 96, 165426 (2017)

    ADS  Google Scholar 

  28. H. Wang, S.T. Pi, J. Kim, Z. Wang, H.H. Fu, R.Q. Wu, Phys. Rev. B 94, 035112 (2016)

    ADS  Google Scholar 

  29. S.M. Aghaei, I. Calizo, J. Appl. Phys. 118, 104304 (2015)

    ADS  Google Scholar 

  30. J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Nat. Rev. Mater. 1, 16055 (2016)

    ADS  Google Scholar 

  31. A.F. Young et al., Nat. Phys. 8, 550 (2012)

    Google Scholar 

  32. E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006)

    ADS  Google Scholar 

  33. J.S. Ardenghi, P. Bechthold, E. Gonzalez, P. Jasen, A. Juan, Eur. Phys. J. B 88, 47 (2015)

    ADS  Google Scholar 

  34. M.A. Wilde, M. Rhode, C. Heyn, D. Heitmann, D. Grundler, U. Zeitler, F. Schöffler, R.J. Haug, Phys. Rev. B 72, 165429 (2005)

    ADS  Google Scholar 

  35. D. Shoenberg, J. Low Temp. Phys. 56, 417 (1984)

    ADS  Google Scholar 

  36. F. Escudero, J. Ardenghi, P. Jasen, A. Juan, Physica B 518, 39 (2017)

    ADS  Google Scholar 

  37. F. Escudero, J.S. Ardenghi, P. Jasen, J. Phys.: Condens. Matter 30, 275803 (2018)

    ADS  Google Scholar 

  38. F. Escudero, J.S. Ardenghi, P. Jasen, J. Phys.: Condens. Matter 31, 285804 (2019)

    Google Scholar 

  39. I. Lifshitz, A. Kosevich, Sov. Phys. JETP 2, 636 (1956)

    Google Scholar 

  40. D. Shoenberg,Magnetic oscillations in metals (Cambridge University Press, 1984)

  41. K. Kishigi, Y. Hasegawa, Phys. Rev. B 65, 205405 (2002)

    ADS  Google Scholar 

  42. N.A. Zimbovskaya, J. Phys.: Condens. Matter 19, 176227 (2007)

    ADS  Google Scholar 

  43. Z. Wang, W. Zhang, P. Zhang, Phys. Rev. B 79, 235327 (2009)

    ADS  Google Scholar 

  44. R. Nasir, M.A. Khan, M. Tahir, K. Sabeeh, J. Phys.: Condens. Matter 22, 025503 (2009)

    ADS  Google Scholar 

  45. L. Qiong-Gui, H. Si-Yuan, Commun. Theor. Phys. 53, 87 (2010)

    ADS  Google Scholar 

  46. I.A. Luk’yanchuk, Low Temp. Phys. 37, 45 (2011)

    ADS  Google Scholar 

  47. C.J. Tabert, J.P. Carbotte, J. Phys.: Condens. Matter 27, 015008 (2014)

    ADS  Google Scholar 

  48. L. Heße, K. Richter, Phys. Rev. B 90, 205424 (2014)

    ADS  Google Scholar 

  49. S. Zhang, N. Ma, E. Zhang, J. Phys.: Condens. Matter 22, 115302 (2010)

    ADS  Google Scholar 

  50. Z.G. Fu, Z.G. Wang, S.S. Li, P. Zhang, Chin. Phys. B 20, 058103 (2011)

    ADS  Google Scholar 

  51. C.J. Tabert, J.P. Carbotte, E.J. Nicol, Phys. Rev. B 91, 035423 (2015)

    ADS  Google Scholar 

  52. J.Y. Fortin, A. Audouard, Eur. Phys. J. B 88, 225 (2015)

    ADS  Google Scholar 

  53. J.Y. Fortin, A. Audouard, Eur. Phys. J. B 90, 60 (2017)

    ADS  Google Scholar 

  54. S. Becker, M. Zworski, Commun. Math. Phys. 367, 941 (2019)

    ADS  Google Scholar 

  55. R.B. Dingle, Proc. R. Soc. Lond. Ser. A 211, 517 (1952)

    ADS  Google Scholar 

  56. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    ADS  Google Scholar 

  57. S.G. Sharapov, V.P. Gusynin, H. Beck, Phys. Rev. B 69, 075104 (2004)

    ADS  Google Scholar 

  58. S.J. Williamson, S. Foner, R.A. Smith, Phys. Rev. 136, A1065 (1964)

    ADS  Google Scholar 

  59. F. Fang, T. Smith, S. Wright, Surf. Sci. 196, 310 (1988)

    ADS  Google Scholar 

  60. R. Gammag, C. Villagonzalo, Solid State Commun. 146, 487 (2008)

    ADS  Google Scholar 

  61. C.H. Yang, F.M. Peeters, W. Xu, Phys. Rev. B 82, 075401 (2010)

    ADS  Google Scholar 

  62. H. Funk, A. Knorr, F. Wendler, E. Malic, Phys. Rev. B 92, 205428 (2015)

    ADS  Google Scholar 

  63. A. Potts et al., J. Phys.: Condens. Matter 8, 5189 (1996)

    MathSciNet  ADS  Google Scholar 

  64. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    ADS  Google Scholar 

  65. E. Pop, V. Varshney, A.K. Roy, MRS Bull. 37, 1273 (2012)

    Google Scholar 

  66. K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, R.D. Agosta, Phys. Rev. B 89, 125403 (2014)

    ADS  Google Scholar 

  67. L.F. Huang, P.L. Gong, Z. Zeng, Phys. Rev. B 91, 205433 (2015)

    ADS  Google Scholar 

  68. X.X. Ren, W. Kang, Z.F. Cheng, R.L. Zheng, Chin. Phys. Lett. 33, 126501 (2016)

    ADS  Google Scholar 

  69. B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang, H. Zhu, Phys. Rev. B 94, 245420 (2016)

    ADS  Google Scholar 

  70. P. Grigoriev, J. Exp. Theor. Phys. 92, 1090 (2001)

    ADS  Google Scholar 

  71. T. Champel, Phys. Rev. B 64, 054407 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Escudero.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escudero, F., Ardenghi, J.S. & Jasen, P. A general formulation for the magnetic oscillations in two dimensional systems. Eur. Phys. J. B 93, 93 (2020). https://doi.org/10.1140/epjb/e2020-10088-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10088-3

Keywords

Navigation