Skip to main content
Log in

A simple model to analyse the activation force in eyeball movements

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Starting with a proposal to model horizontal eye movements, we study the parameters involved in it. Particularly, we investigate the values that best fit the parameters describing the activation force responsible for horizontal saccades, independently of the task being performed. The fitting process is based on data sets gathered with an eye tracker device. The simplicity of the model allows to profit from analytical expressions useful to simplify the fitting process. Finally, we use our model to obtain the activation force corresponding to a reading task, finding a very good agreement with the experimental data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. London, I. Benhar, M. Schwartz, Nat. Rev. Neurol. 9, 44 (2013)

    Article  Google Scholar 

  2. F.Z. Javaid, J. Brenton, L. Guo, M.F. Cordeiro, Front. Neurol. 7, 55 (2016)

    Article  Google Scholar 

  3. A.C. Schütz, D.I. Braun, K.R. Gegenfurtner, J. Vis. 11, 1 (2011)

    Google Scholar 

  4. S.N. Yang, G. McConkie, Eur. J. Cogn. Psychol. 16, 226 (2004)

    Article  Google Scholar 

  5. M. Proudfoot, R.A.L. Menke, R. Sharma, C.M. Berna, S.L. Hicks, C. Kennard, K. Talbot, M.R. Turner, Amyotroph. Lateral Scler. Frontotemporal Degener. 17, 101 (2015)

    Article  Google Scholar 

  6. G. Fernández, J. Laubrock, P. Mandolesi, O. Colombo, O. Agamennoni, J. Clin. Exp. Neuropsychol. 36, 302 (2014)

    Article  Google Scholar 

  7. R.J. Molitor, P.C. Ko, B.A. Ally, J. Alzheimer’s Dis. 44, 1 (2015)

    Article  Google Scholar 

  8. P.S. Holzman, L.R. Proctor, D.W. Hughes, Science 181, 179 (1973)

    Article  ADS  Google Scholar 

  9. E. Pretegiani, L.M. Optican, Front. Neurol. 8, 592 (2017)

    Article  Google Scholar 

  10. C. Prado, M. Dubois, S. Valdois, Vision Res. 47, 2521 (2007)

    Article  Google Scholar 

  11. M.N. Benfatto, G.Ö. Seimyr, J. Ygge, T. Pansell, A. Rydberg, C. Jacobson, PLoS One 11, 12 (2016)

    Google Scholar 

  12. J. Tabernero, E. Chirre, L. Hervella, P. Prieto, P. Artal, Sci. Rep. 6, 25551 (2016)

    Article  ADS  Google Scholar 

  13. B. Luna, K. Velanova, C.F. Geier, Brain Cogn. 68, 293 (2008)

    Article  Google Scholar 

  14. M.K. Eckstein, B. Guerra-Carrillo, A.T. Miller Singley, S.A. Bunge, Dev. Cogn. Neurosci. 25, 69 (2017)

    Article  Google Scholar 

  15. A.T. Duchowski, Behav. Res. Methods Instrum. Comput. 34, 455 (2002)

    Article  Google Scholar 

  16. M.L. Lai, M.J. Tsai, F.Y. Yang, C.Y. Hsu, T.C. Liu, S.W.Y. Lee, M.H. Lee, G.L. Chiou, J.C. Liang, C.C. Tsai, Educ. Res. Rev. 10, 90 (2013)

    Article  Google Scholar 

  17. A. Schall, J. Romano Bergstrom, inEye Track. User Exp. Des. (Elsevier Inc., 2014), pp. 351–360

  18. C.H. Judd, G.T. Buswell,Silent reading; a study of various types (University of Chicago: Suppl. Educ. Monog., Chicago, 1922)

  19. B.W. Tatler, N.J. Wade, H. Kwan, J.M. Findlay, B.M. Velichkovsky, I-Perception 1, 7 (2010)

    Article  Google Scholar 

  20. J.D. Enderle, Synth. Lect. Biomed. Eng. 5, 1 (2010)

    Google Scholar 

  21. P. Lockwood-Cooke, C. Martin, L. Schovanec, inProc. 38th IEEE Conf. Decis. Control (IEEE, 1999), Vol. 1, pp. 405–409

  22. J.D. Enderle, D.A. Sierra, Int. J. Neural Syst. 23, 1350002 (2013)

    Article  Google Scholar 

  23. J.I. Specht, L. Dimieri, E. Urdapilleta, G. Gasaneo, Eur. Phys. J. B 90, 25 (2017)

    Article  ADS  Google Scholar 

  24. S. Bouzat, M.L. Freije, A.L. Frapiccini, G. Gasaneo, Phys. Rev. Lett. 120, 178101 (2018)

    Article  ADS  Google Scholar 

  25. I. Hooge, M. Nyström, T. Cornelissen, K. Holmqvist, Vision Res. 112, 55 (2015)

    Article  Google Scholar 

  26. J.A. Del Punta, K.V. Rodriguez, G. Gasaneo, S. Bouzat, Phys. Rev. E 99, 032422 (2019)

    Article  ADS  Google Scholar 

  27. A.T. Bahill, M.R. Clark, L. Stark, Math. Biosci. 24, 191 (1975)

    Article  Google Scholar 

  28. J. Otero-Millan, X.G. Troncoso, S.L. Macknik, I. Serrano-Pedraza, S. Martinez-Conde, J. Vis. 8, 21 (2008)

    Article  Google Scholar 

  29. E.D. Reichle, K. Rayner, A. Pollatsek, Behav. Brain Sci. 26, 445 (2003)

    Article  Google Scholar 

  30. R. Engbert, A. Nuthmann, E.M. Richter, R. Kliegl, Psychol. Rev. 112, 777 (2005)

    Article  Google Scholar 

  31. M. Abramowitz, I. Stegun,Handbook of Methematical Funcions (U.S. Government, 1972)

  32. R. Engbert, R. Kliegl, Vision Res. 43, 1035 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Laura Frapiccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frapiccini, A.L., Del Punta, J.A., Rodriguez, K.V. et al. A simple model to analyse the activation force in eyeball movements. Eur. Phys. J. B 93, 34 (2020). https://doi.org/10.1140/epjb/e2020-100490-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100490-8

Keywords

Navigation