Skip to main content
Log in

Synchronizability of two-layer networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we investigate the synchronizability of two-layer networks according to the master stability method. We define three particular couplings: positively correlated, randomly correlated and negatively correlated couplings. When the inter-layer coupling strength is fixed, negatively correlated coupling leads to the best synchronizability of a two-layer network, and synchronizability of networks with randomly and positively correlated couplings follow consecutively. For varying inter-layer coupling strength, the trend of network synchronizability with an unbounded synchronous region differs from that with a bounded one. If the synchronous region is unbounded, synchronizability of the two-layer network keeps enhancing, but it has a threshold. If the synchronous region is bounded, the synchronizability of the two-layer network keeps improving until the inter-layer coupling strength reaches a certain value, and then the synchronizability gets weakened with ever-increasing inter-layer coupling strength. To summarise, there exists an optimal value of the inter-layer coupling strength for maximising synchronizability of two-layer networks, regardless of the synchronous region types and coupling patterns. The findings provided in this paper shed new light on understanding synchronizability of multilayer networks, and may find potential applications in designing optimal inter-layer couplings for synchronization of two-layer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D’Agostino, A. Scala, Networks of Networks: the last Frontier of Complexity (Springer, Berlin, 2014)

  2. P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328, 5980 (2010)

    Article  MathSciNet  Google Scholar 

  3. R. Gutiérrez, I. Sendiñna-Nadal, M. Zanin, D. Papo, S. Boccaletti, Sci. Rep. 2, 396 (2012)

    Article  ADS  Google Scholar 

  4. G. Bianconi, Phys. Rev. E 87, 6 (2013)

    Article  Google Scholar 

  5. S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C.J. Pérez-Vicente, Y. Moreno, A. Arenas, Phys. Rev. Lett. 110, 2 (2013)

    Article  Google Scholar 

  6. C. Granell, S. Gomez, A. Arenas, Phys. Rev. Lett. 111, 12 (2013)

    Article  Google Scholar 

  7. A. Sole-Ribalta, M. De Domenico, N.E. Kouvaris, A. Díaz-Guilera, S. Gómez, A. Arenas, Phys. Rev. E 88, 3 (2013)

    Article  Google Scholar 

  8. J. Gómez-Gardeñes, I. Reinares, A. Arenas, L.M. Floría, Sci. Rep. 2, 620 (2012)

    Article  Google Scholar 

  9. J. Gómez-Gardeñes, C. Gracia-Lázaro, L.M. Floría, Y. Moreno, Phys. Rev. E 86, 5 (2012)

    Article  Google Scholar 

  10. J. Aguirre, R. Sevilla-Escoboza, R. Gutiérrez, D. Papo, J.M. Buldú, Phys. Rev. Lett. 112, 24 (2014)

    Article  Google Scholar 

  11. J. Um, P. Minnhagen, B.J. Kim, Chaos 21, 2 (2011)

    Article  MathSciNet  Google Scholar 

  12. R. Lu, W. Yu, J. Lü, A. Xue, IEEE T. Neur. Net. Lear. 25, 11 (2014)

    Google Scholar 

  13. H. Zhang, X. Wang, X. Lin, IEEE/ACM T. Comput. Bi. 11, 5 (2014)

    Article  Google Scholar 

  14. C. Luo, X. Wang, H. Liu, Sci. Rep. 4, 7522 (2014)

    Article  ADS  Google Scholar 

  15. C. Luo, X. Wang, H. Liu, Chaos 24, 3 (2014)

    Google Scholar 

  16. M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Com. Net. 2, 3 (2013)

    Google Scholar 

  17. S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  18. A.L. Barabási, R. Albert, Science 286, 5439 (1999)

    Google Scholar 

  19. X.F. Wang, X. Li, G. Chen, Complex Networks Theory and its Application (Tsinghua University Press, Beijing, 2006)

  20. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 10 (1998)

    Article  Google Scholar 

  21. L. Tang, J.-A. Lu, J. Lü, X. Yu, Int. J. Bifurc. Chaos 22, 11 (2012)

    Google Scholar 

  22. L. Tang, J.-A. Lu, J. Lü, X. Wu, Int. J. Bifurc. Chaos 24, 1 (2014)

    Google Scholar 

  23. B. Mohar, Y. Alavi, G. Chartrand, O. Oellermann, Graph Theory, Combinatorics, and Applications 18, 7 (1991)

    Google Scholar 

  24. G. Chen, The Theory and Application of Matrix (Science Press, Beijing, 2007)

  25. C.W. Wu, Phys. Lett. A 319, 5 (2003)

    Article  Google Scholar 

  26. Y.Y. Gao, J.-A. Lu, Complex Systems and Complexity Science 9, 3 (2012)

    Google Scholar 

  27. S.J. Wang, X.J. Xu, Z.X. Wu, Y.H. Wang, Phys. Rev. E. 74, 4 (2006)

    MathSciNet  Google Scholar 

  28. A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 3 (2013)

    Article  Google Scholar 

  29. A. Díaz-Guilera, J. Gómez-Gardeñes, Y. Moreno, M. Nekovee, Int. J. Bifurc. Chaos 19, 2 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Zhou, J., Lu, Ja. et al. Synchronizability of two-layer networks. Eur. Phys. J. B 88, 240 (2015). https://doi.org/10.1140/epjb/e2015-60330-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60330-0

Keywords

Navigation