Skip to main content
Log in

Study of random sequential adsorption by means of the gradient method

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By using the gradient method (GM) we study random sequential adsorption (RSA) processes in two dimensions under a gradient constraint that is imposed on the adsorption probability along one axis of the sample. The GM has previously been applied successfully to absorbing phase transitions (both first and second order), and also to the percolation transition. Now, we show that by using the GM the two transitions involved in RSA processes, namely percolation and jamming, can be studied simultaneously by means of the same set of simulations and by using the same theoretical background. For this purpose we theoretically derive the relevant scaling relationships for the RSA of monomers and we tested our analytical results by means of numerical simulations performed upon RSA of both monomers and dimers. We also show that two differently defined interfaces, which run in the direction perpendicular to the axis where the adsorption probability gradient is applied and separate the high-density (large-adsorption probability) and the low-density (low-adsorption probability) regimes, capture the main features of the jamming and percolation transitions, respectively. According to the GM, the scaling behaviour of those interfaces is governed by the roughness exponent α = 1/(1 + ν), where ν is the suitable correlation length exponent. Besides, we present and discuss in a brief overview some achievements of the GM as applied to different physical situations, including a comparison of the critical exponents determined in the present paper with those already published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J-.S. Wang, P. Nielaba, V. Privman, Physica A 199, 527 (1993)

    Article  ADS  Google Scholar 

  2. C. Fusco, P. Gallo, A. Petri, M. Rovere, J. Chem. Phys. 114, 7563 (2001)

    Article  ADS  Google Scholar 

  3. J.W. Lee, B.H. Hong, J. Chem. Phys. 119, 533 (2003)

    Article  ADS  Google Scholar 

  4. E. Eisenberg, A. Baram, J. Phys. A 30, L271 (1997)

    Article  ADS  MATH  Google Scholar 

  5. V. Pereyra, E.V. Albano, E. Duering. Phys. Rev. E 48, R3229 (1993)

    Article  ADS  Google Scholar 

  6. V. Pereyra, E.V. Albano, J. Phys. A 26, 4175 (1993)

    Article  ADS  Google Scholar 

  7. B. Bonnier, Phys. Rev. E 64, 066111 (2001)

    Article  ADS  Google Scholar 

  8. I. Lončarević, L. Budinski-Petković, S.B. Vrhovac, A. Belić, J. Stat. Mech. P02022 (2010)

  9. V.A. Cherkasova, Y.Y. Tarasevich, N.I. Lebovka, N.V. Vygornitskii, Eur. Phys. J. B 74, 205 (2010)

    Article  ADS  Google Scholar 

  10. J.W. Evans, Rev. Mod. Phys. 65, 1281 (1993)

    Article  ADS  Google Scholar 

  11. V. Privman, Colloids Surf. A Physicochem. Eng. Aspects 165, 231 (2000)

    Article  Google Scholar 

  12. D. Stauffer, A. Aharoni, Introduction to the percolation theory (Francis and Taylor, London, 1992)

  13. V. Trappe, V. Prasad, L. Cipelletti, P.N. Segre, D.A. Weitz, Nature 411, 772 (2001)

    Article  ADS  Google Scholar 

  14. A. Lawlor et al., Phys. Rev. Lett. 89, 245503 (2002)

    Article  ADS  Google Scholar 

  15. P. Olsson, S. Teitel, Phys. Rev. Lett. 99, 178001 (2007)

    Article  ADS  Google Scholar 

  16. B. Sapoval, M. Rosso, J.F. Gouyet, J. Phys. Lett. 46, L149 (1985)

    Article  Google Scholar 

  17. E.S. Loscar, N. Guisoni, E.V. Albano, Phys. Rev. E 80, 051123 (2009)

    Article  ADS  Google Scholar 

  18. N. Guisoni, E.S. Loscar, E.V. Albano, Phys. Rev. E 83, 011125 (2011)

    Article  ADS  Google Scholar 

  19. R.M. Ziff, B. Sapoval, J. Phys. A 19, L1169 (1986)

    Article  ADS  Google Scholar 

  20. N. Vandewalle, S. Galam, M. Kramer, Eur. Phys. J. B 14, 407 (2000)

    Article  ADS  Google Scholar 

  21. G. Kondrat, A. Pekalski, Phys. Rev. E 63, 051108 (2001)

    Article  ADS  Google Scholar 

  22. A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

  23. M.T. Gastner, B. Oborny, A.B. Ryabov, B. Blasius, Phys. Rev. Lett. 106, 128103 (2011)

    Article  ADS  Google Scholar 

  24. E.S. Loscar, R.A. Borzi, E.V. Albano, Eur. Phys. J. B 36, 157 (2003)

    Article  ADS  Google Scholar 

  25. E.S. Loscar, R.A. Borzi, E.V. Albano, Phys. Rev. E 74, 051601 (2006)

    Article  ADS  Google Scholar 

  26. G. Kondrat, J. Chem. Phys. 124, 054713 (2006)

    Article  ADS  Google Scholar 

  27. V.C. Chappa, E.V. Albano, J. Chem. Phys. 121, 328 (2004)

    Article  ADS  Google Scholar 

  28. E.V. Albano, V.C. Chappa, Physica A 327, 18 (2003)

    Article  ADS  MATH  Google Scholar 

  29. R.M. Ziff, Phys. Procedia 15, 106 (2011)

    Article  Google Scholar 

  30. R.A. Monetti, E.V. Albano, Physica A 206, 289 (1994)

    Article  ADS  Google Scholar 

  31. R.A. Monetti, E.V. Albano, Chaos Solitons Fractals 6, 379 (1995)

    Article  ADS  Google Scholar 

  32. Y. Leroyer, E. Pommiers, Phys. Rev. B 50, 2795 (1994)

    Article  ADS  Google Scholar 

  33. R.M. Ziff, E. Gulari, Y. Barshad, Phys. Rev. Lett. 56, 2553 (1986)

    Article  ADS  Google Scholar 

  34. E.S. Loscar, E.V. Albano, Rep. Prog. Phys. 66, 1343 (2003)

    Article  ADS  Google Scholar 

  35. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  36. M. Kolb, Y. Boudeville, J. Chem. Phys. 92, 3935 (1990)

    Article  ADS  Google Scholar 

  37. C.A. Voigt, R.M. Ziff, Phys. Rev. E 56, R6241 (1997)

    Article  ADS  Google Scholar 

  38. E.V. Albano, Physica A 216, 213 (1995)

    Article  ADS  Google Scholar 

  39. R.M. Ziff, B.J. Brosilow, Phys. Rev. A 46, 4630 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Loscar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loscar, E.S., Guisoni, N. & Albano, E.V. Study of random sequential adsorption by means of the gradient method. Eur. Phys. J. B 85, 60 (2012). https://doi.org/10.1140/epjb/e2012-20958-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20958-8

Keywords

Navigation