Skip to main content
Log in

Study of \(^{9}\)Be fusion in \(^{93}\)Nb near the Coulomb barrier

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The measurement of fusion cross sections from the \(^{9}\)Be induced reaction on \(^{93}\)Nb within the energy range of 20–46 MeV has been conducted using off-beam \(\gamma \)-ray spectroscopy. The measured excitation functions have been analyzed using equilibrium and pre-equilibrium reaction-based model codes to understand the underlying mechanisms. Additionally, the measured fusion excitation function was examined within the framework of the coupled-channel approach using the CCFULL code. Notably, the coupled-channel calculations, including couplings to inelastic states of the target and the projectile, yielded a satisfactory description of the sub-barrier fusion data. However, at energies above the barrier, the fusion cross section was observed to be suppressed by approximately 17% compared to the predictions made by the coupled-channel calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We have included the measured cross section data explicitly in a tabular format within the article. Therefore, we have no further information to deposit.]

References

  1. L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Rep. 424, 1 (2006). https://doi.org/10.1016/j.physrep.2005.10.006Phys

    Article  Google Scholar 

  2. N. Keeley, R. Raabe, N. Alamanos, J.J. Sida, Prog. Part. Nucl. Phys. 59, 579 (2007). https://doi.org/10.1016/j.ppnp.2007.02.002

    Article  ADS  Google Scholar 

  3. N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Prog. Part. Nucl. Phys. 63, 396 (2009). https://doi.org/10.1016/j.ppnp.2009.05.003

    Article  ADS  Google Scholar 

  4. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Mod. Phys. 86, 317 (2014). https://doi.org/10.1103/RevModPhys.86.317Rev

    Article  ADS  Google Scholar 

  5. K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012). https://doi.org/10.1143/PTP.128.1061

    Article  ADS  Google Scholar 

  6. L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015). https://doi.org/10.1016/j.physrep.2015.08.001

    Article  ADS  MathSciNet  Google Scholar 

  7. J.F. Liang, C. Signorini, Int. J. Mod. Phys. E 14, 1121 (2005). https://doi.org/10.1142/S021830130500382X

    Article  ADS  Google Scholar 

  8. R. Kumar, R. Prajapat, M. Maiti, J. Phys. G Nucl. Part. Phys. 50, 025106 (2023). https://doi.org/10.1088/1361-6471/acaffc

    Article  ADS  Google Scholar 

  9. R. Kumar, M. Maiti, T.N. Nag, S. Sodaye, Rev. C 104, 064606 (2021). https://doi.org/10.1103/PhysRevC.104.064606Phys

    Article  Google Scholar 

  10. R. Prajapat, M. Maiti, D. Kumar, Phys. Rev. C 103, 014608 (2021). https://doi.org/10.1103/PhysRevC.103.014608

    Article  ADS  Google Scholar 

  11. R. Prajapat, M. Maiti, D. Kumar, A. Chauhan, Phys. Scr. 95, 055306 (2020). https://doi.org/10.1088/1402-4896/ab784e

    Article  ADS  Google Scholar 

  12. A. Chauhan, M. Maiti, S. Lahiri, Phys. Rev. C 99, 064609 (2019). https://doi.org/10.1103/PhysRevC.99.064609

    Article  ADS  Google Scholar 

  13. D. Kumar, M. Maiti, Phys. Rev. C 95, 064602 (2017). https://doi.org/10.1103/PhysRevC.95.064602

    Article  ADS  Google Scholar 

  14. M. Maiti, S. Lahiri, Phys. Rev. C 84, 067601 (2011). https://doi.org/10.1103/PhysRevC.84.067601

    Article  ADS  Google Scholar 

  15. M. Dasgupta, D.J. Hinde, R.D. Butt, R.M. Anjos, A.C. Berriman, N. Carlin, P.R.S. Gomes, C.R. Morton, J.O. Newton, A. Szanto de Toledo, K. Hagino, Phys. Rev. Lett. 82, 1395 (1999). https://doi.org/10.1103/PhysRevLett.82.1395

    Article  ADS  Google Scholar 

  16. M. Dasgupta, P.R.S. Gomes, D.J. Hinde, S.B. Moraes, R.M. Anjos, A.C. Berriman, R.D. Butt, N. Carlin, J. Lubian, C.R. Morton, J.O. Newton, A. Szanto de Toledo, Phys. Rev. C 70, 024606 (2004). https://doi.org/10.1103/PhysRevC.70.024606

    Article  ADS  Google Scholar 

  17. D.J. Hinde, M. Dasgupta, B.R. Fulton, C.R. Morton, R.J. Wooliscroft, A.C. Berriman, K. Hagino, Phys. Rev. Lett. 89, 272701 (2002). https://doi.org/10.1103/PhysRevLett.89.272701

    Article  Google Scholar 

  18. P. R. S. Gomes, I. Padron, E. Crema, O. A. Capurro, J. O. Fernández Niello, A. Arazi, G. V. Martí, J. Lubian, M. Trotta, A. J. Pacheco, J. E. Testoni, M. D. Rodríguez, M. E. Ortega, L. C. Chamon, R. M. Anjos, R. Veiga, M. Dasgupta, D. J. Hinde, K. Hagino, Phys. Rev. C 73, 064606 (2006). https://doi.org/10.1103/PhysRevC.73.064606

  19. L.R. Gasques, D.J. Hinde, M. Dasgupta, A. Mukherjee, R.G. Thomas, Phys. Rev. C 79, 034605 (2009). https://doi.org/10.1103/PhysRevC.79.034605

    Article  ADS  Google Scholar 

  20. V.V. Parkar, R. Palit, S.K. Sharma, B.S. Naidu, S. Santra, P.K. Joshi, P.K. Rath, K. Mahata, K. Ramachandran, T. Trivedi, A. Raghav, Phys. Rev. C 82, 054601 (2010). https://doi.org/10.1103/PhysRevC.82.054601

    Article  ADS  Google Scholar 

  21. D.J. Hinde, M. Dasgupta, Phys. Rev. C 81, 064611 (2010). https://doi.org/10.1103/PhysRevC.81.064611

    Article  ADS  Google Scholar 

  22. P.R.S. Gomes, D.R. Otomar, T. Correa, L.F. Canto, J. Lubian, R. Linares, D.H. Luong, M. Dasgupta, D.J. Hinde, M.S. Hussein, J. Phys. G Nucl. Part. Phys. 39, 115103 (2012). https://doi.org/10.1088/0954-3899/39/11/115103

  23. D.H. Luong, M. Dasgupta, D.J. Hinde, R. du Rietz, R. Rafiei, C.J. Lin, M. Evers, A. Diaz-Torres, Phys. Lett. B 695, 105 (2011). https://doi.org/10.1016/j.physletb.2010.11.007

    Article  ADS  Google Scholar 

  24. N.T. Zhang, Y.D. Fang, P.R.S. Gomes, J. Lubian, M.L. Liu, X.H. Zhou, G.S. Li, J.G. Wang, S. Guo, Y.H. Qiang, Y.H. Zhang, D.R. Mendes Junior, Y. Zheng, X.G. Lei, B.S. Gao, Z.G. Wang, K.L. Wang, X.F. He, Phys. Rev. C 90, 024621 (2014). https://doi.org/10.1103/PhysRevC.90.024621

    Article  ADS  Google Scholar 

  25. Y.D. Fang, P.R.S. Gomes, J. Lubian, M.L. Liu, X.H. Zhou, D.R. MendesJunior, N.T. Zhang, Y.H. Zhang, G.S. Li, J.G. Wang, S. Guo, Y.H. Qiang, B.S. Gao, Y. Zheng, X.G. Lei, Z.G. Wang, Phys. Rev. C 91, 014608 (2015). https://doi.org/10.1103/PhysRevC.91.014608

    Article  ADS  Google Scholar 

  26. P.R.S. Gomes, R. Linares, J. Lubian, C.C. Lopes, E.N. Cardozo, B.H.F. Pereira, I. Padron, Phys. Rev. C 84, 014615 (2011). https://doi.org/10.1103/PhysRevC.84.014615

    Article  ADS  Google Scholar 

  27. K.J. Cook, E.C. Simpson, D.H. Luong, S. Kalkal, M. Dasgupta, D.J. Hinde, Phys. Rev. C 93, 064604 (2016). https://doi.org/10.1103/PhysRevC.93.064604

    Article  ADS  Google Scholar 

  28. D.H. Luong, M. Dasgupta, D.J. Hinde, R. du Rietz, R. Rafiei, C.J. Lin, M. Evers, A. Diaz-Torres, Phys. Rev. C 88, 034609 (2013). https://doi.org/10.1103/PhysRevC.88.034609

    Article  ADS  Google Scholar 

  29. E.C. Simpson, K.J. Cook, D.H. Luong, S. Kalkal, I.P. Carter, M. Dasgupta, D.J. Hinde, E. Williams, Phys. Rev. C 93, 024605 (2016). https://doi.org/10.1103/PhysRevC.93.024605

    Article  ADS  Google Scholar 

  30. S. Kalkal, E.C. Simpson, D.H. Luong, K.J. Cook, M. Dasgupta, D.J. Hinde, I.P. Carter, D.Y. Jeung, G. Mohanto, C.S. Palshetkar, E. Prasad, D.C. Rafferty, C. Simenel, K. Vo-Phuoc, E. Williams, L.R. Gasques, P.R.S. Gomes, R. Linares, Phys. Rev. C 93, 044605 (2016). https://doi.org/10.1103/PhysRevC.93.044605

    Article  ADS  Google Scholar 

  31. K.J. Cook, E.C. Simpson, L.T. Bezzina, M. Dasgupta, D.J. Hinde, K. Banerjee, A.C. Berriman, C. Sengupta, Phys. Rev. Lett. 122, 102501 (2019). https://doi.org/10.1103/PhysRevLett.122.102501

    Article  ADS  Google Scholar 

  32. C.S. Palshetkar, S. Santra, A. Chatterjee, K. Ramachandran, S. Thakur, S.K. Pandit, K. Mahata, A. Shrivastava, V.V. Parkar, V. Nanal, Phys. Rev. C 82, 044608 (2010). https://doi.org/10.1103/PhysRevC.82.044608

    Article  ADS  Google Scholar 

  33. V.V. Parkar, R. Palit, S.K. Sharma, B.S. Naidu, S. Santra, P.K. Joshi, P.K. Rath, K. Mahata, K. Ramachandran, T. Trivedi, A. Raghav, Phys. Rev. C 82, 054601 (2010). https://doi.org/10.1103/PhysRevC.82.054601

    Article  ADS  Google Scholar 

  34. Y.D. Fang, P.R.S. Gomes, J. Lubian, X.H. Zhou, Y.H. Zhang, J.L. Han, M.L. Liu, Y. Zheng, S. Guo, J.G. Wang, Y.H. Qiang, Z.G. Wang, X.G. Wu, C.Y. He, Y. Zheng, C.B. Li, S.P. Hu, S.H. Yao, Phys. Rev. C 87, 024604 (2013). https://doi.org/10.1103/PhysRevC.87.024604

    Article  ADS  Google Scholar 

  35. G.S. Li, J.G. Wang, J. Lubian, H.O. Soler, Y.D. Fang, M.L. Liu, N.T. Zhang, X.H. Zhou, Y.H. Zhang, B.S. Gao, Y.H. Qiang, S. Guo, S.C. Wang, K.L. Wang, K.K. Zheng, R. Li, Y. Zheng, Phys. Rev. C 100, 054601 (2019). https://doi.org/10.1103/PhysRevC.100.054601

    Article  ADS  Google Scholar 

  36. M. Kaushik, G. Gupta, S. Thakur, H. Krishnamoorthy, P.P. Singh, V.V. Parkar, V. Nanal, A. Shrivastava, R.G. Pillay, K. Mahata, K. Ramachandran, S. Pal, C.S. Palshetkar, S.K. Pandit, Phys. Rev. C 101, 034611 (2020). https://doi.org/10.1103/PhysRevC.101.034611

    Article  ADS  Google Scholar 

  37. M. Dasgupta, D.J. Hinde, S.L. Sheehy, B. Bouriquet, Phys. Rev. C 81, 024608 (2010). https://doi.org/10.1103/PhysRevC.81.024608

    Article  ADS  Google Scholar 

  38. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  39. A. Gavron, Phys. Rev. C 21, 230 (1980). https://doi.org/10.1103/PhysRevC.21.230

    Article  ADS  Google Scholar 

  40. M. Herman, R. Capote, B.V. Carlson, P. Oblozinsky, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007). https://doi.org/10.1016/j.nds.2007.11.003

    Article  ADS  Google Scholar 

  41. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/. http://www.nndc.bnl.gov/nudat2/. Accessed 27 Oct 2023

  42. R. Bass, Phys. Rev. Lett. 39, 265 (1977). https://doi.org/10.1103/PhysRevLett.39.265

    Article  ADS  Google Scholar 

  43. C.M. Perey, F.G. Perey, At. Data Nucl. Data Tables 17, 1 (1976). https://doi.org/10.1016/0092-640X(76)90007-3

    Article  ADS  Google Scholar 

  44. J.R. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1962). https://doi.org/10.1016/0029-5582(62)90196-7

    Article  Google Scholar 

  45. C. H. Dasso, S. Landowne, Comput. Phys. Commun. 46, 187 (1987). https://inis.iaea.org/search/search.aspx?orig_q=RN:19004331

  46. A. Gilbert, A.G.W. Cameron, J. Phys. 43, 1446 (1965). https://doi.org/10.1139/p65-139Can

    Article  ADS  Google Scholar 

  47. A. V. Ignatyuk, G. N. Smirenkin, A. S. Tishin, Sov. J. Nucl. Phys. 21, 255 [Yad. Fiz. 21, 485 (1975)]

  48. A. D’Arrigo, G. Giardina, M. Herman, A.V. Ignatyuk, A. Taccone, Phys. G Nucl. Part. Phys. 20, 365 (1994). https://doi.org/10.1088/0954-3899/20/2/015J

    Article  ADS  Google Scholar 

  49. R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Gel, Y. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, ESh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009). https://doi.org/10.1016/j.nds.2009.10.004

    Article  ADS  Google Scholar 

  50. H. Sharma, M. Maiti, T.N. Nag, S. Sodaye, Phys. Rev. C 107, 064601 (2023). https://doi.org/10.1103/PhysRevC.107.064601

  51. K. Hagino, N. Rowley, A. T. Kruppa, Comput. Phys. Commun. 123, 143 (1999). https://doi.org/10.1016/S0010-4655(99)00243-X. K. Hagino (private communication)

  52. H.J. Votava, T.B. Clegg, E.J. Ludwig, W.J. Thompson, Nucl. Phys. A 204, 529 (1973). https://doi.org/10.1016/0029-5582(63)90714-4

    Article  ADS  Google Scholar 

  53. H. Nguyen Ngoc, M. Hors, J. Perez-y-Jorba, Nucl. Phys. 42, 62 (1963). https://doi.org/10.1016/0029-5582(63)90714-4

    Article  Google Scholar 

  54. A. Mukherjee, M. Dasgupta, D.J. Hinde, K. Hagino, J.R. Leigh, J.C. Mein, C.R. Morton, J.O. Newton, H. Timmers, Phys. Rev. C 66, 034607 (2002). https://doi.org/10.1103/PhysRevC.66.034607

    Article  ADS  Google Scholar 

  55. R.A. Broglia, A. Winther, Elastic and Inelastic Reactions, Heavy Ion Reaction Lecture Notes, vol. I (Benjamin Cummings, Redwood City, 1981), p.114

    Google Scholar 

  56. L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, J. Phys. G Nucl. Part. Phys. 36, 015109 (2008). https://doi.org/10.1088/0954-3899/36/1/015109

    Article  ADS  Google Scholar 

  57. L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, Nucl. Phys. A 821, 51 (2009). https://doi.org/10.1016/j.nuclphysa.2009.02.001

    Article  ADS  Google Scholar 

  58. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973). https://doi.org/10.1103/PhysRevLett.31.766

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the BARC-TIFR Pelletron staff for their cooperation and assistance during the experiment. The research fellowships from DST-INSPIRE (IF180078) and MHRD, Government of India, are gratefully acknowledged. We acknowledge the support of the Department of Atomic Energy, Government of India, under Project Identification No. RTI 4002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Ethics declarations

Code Availability Statement

This manuscript has no associated code/software. [Author’s comment: No Code/Software was generated during the current study. Therefore, Code/Software sharing is not applicable to this article.]

Additional information

Communicated by Alessia Di Pietro.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Maiti, M., Sagwal, M. et al. Study of \(^{9}\)Be fusion in \(^{93}\)Nb near the Coulomb barrier. Eur. Phys. J. A 60, 64 (2024). https://doi.org/10.1140/epja/s10050-024-01296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01296-5

Navigation