Skip to main content
Log in

Cross section measurement for the 14N(n,α0,1)11B reactions in the 4.5–11.5 MeV neutron energy region

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

With more accurate measurement method for gas samples, cross sections of the 14N(n,α0,1)11B reactions were measured at 24 energy points in the 4.5–11.5 MeV neutron energy region based on the 4.5 MV Van de Graaff accelerator at Peking University and the HI-13 tandem accelerator of China Institute of Atomic Energy (CIAE). The average neutron fluence (Φ) through the gas sample was obtained through the combination of a highly enriched 238U3O8 sample and the simulation based on SuperMC. The cross sections of the 14N(n,α0)11B reaction measured using the gas sample and the solid samples are in agreement with each other. R-matrix analysis was carried out for the n + 14N system using code RAC in the neutron energy region below 30 MeV. A possible valley structure in both the excitation functions of the 14N(n,α0,1)11B reactions in the 10–11 MeV neutron energy region was found for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
FIG. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since the data for this study contains unpublished work, participants in this study do not agree to share their data publicly, so there is no supporting data].

References

  1. Y. Arai, 3.02—Nitride fuel, in Comprehensive nuclear materials. ed. by R.J.M. Konings (Elsevier, Oxford, 2012), pp.41–54

    Chapter  Google Scholar 

  2. C. Ekberg, D.R. Costa, M. Hedberg et al., J. Radioanal. Nucl. Chem. 318(3), 1713–1725 (2018)

    Article  Google Scholar 

  3. R.D. Syarifah, Z. Su’ud, K. Basar et al., Int. J. Energy Res. 42(1), 214–220 (2018)

    Article  Google Scholar 

  4. F. Gabbard, H. Bichsel, T.W. Bonner, Nucl. Phys. 14(2), 277–294 (1959)

    Article  Google Scholar 

  5. V.A. Khryachkov, I.P. Bondarenko, B.D. Kuzminov et al., EPJ Web Conf. 21, 03005 (2012)

    Article  Google Scholar 

  6. D.A. Brown, M.B. Chadwick, R. Capote et al., Nucl. Data Sheets 148, 1–142 (2018)

    Article  ADS  Google Scholar 

  7. M.B. Chadwick, M. Herman, P. Obložinský et al., Nucl. Data Sheets 112(12), 2887–2996 (2011)

    Article  ADS  Google Scholar 

  8. JEFF-3.3. https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html#neutrons.

  9. Y.-L. Yan, J.-S. Zhang, J.-F. Duan. The database of nuclear physics. http://www.nuclear.csdb.cn/pingjia.html.

  10. S.V. Zabrodskaya, A.V. Ignatyuk, V.N. Koshcheev et al., Vopr. At. Nauki Tekhn. Ser. Yad. Konst. 1, 3 (2007)

    Google Scholar 

  11. ADS-2.0. https://www-nds.iaea.org/exfor/servlet/E4sGetTabSect?SectID=14236409&req=2833&PenSectID=19357937&json.

  12. A.J. Koning, D. Rochman, J. Ch Sublet et al., Nucl. Data Sheets 155, 1–55 (2019)

    Article  ADS  Google Scholar 

  13. O. Iwamoto, N. Iwamoto, K. Shibata, et al. Status of JENDL, in EPJ Web of Conferences (EDP Sciences, 2020)

  14. FENDL-3.2b. https://www-nds.iaea.org/exfor/servlet/E4sGetTabSect?SectID=14620406&req=2833&PenSectID=19396258.

  15. J Blachot, JEF-2.2 radioactive decay data, in Int. Symp. on Nuclear Data Evaluation Methodology, BNL, 1992. 1992.

  16. A.I. Blokhin, E.V. Gai, A.V. Ignatyuk et al., Yad. Reak. Konst 2(2), 62 (2016)

    Google Scholar 

  17. H.D. Lemmel, P.K. McLaughlin, BROND-2.2. Russian evaluated neutron reaction data library. Summary documentation (International Atomic Energy Agency, Vienna, 1994)

    Google Scholar 

  18. H. Jiang, Z. Cui, Y. Hu, et al., Chin. Phys. C 44 (11) (2020)

  19. C.E. Brown, Coefficient of variation, in Applied Multivariate Statistics in Geohydrology and Related Sciences. (Springer, Berlin, 1998), pp.155–157

    Chapter  Google Scholar 

  20. G.L. Morgan, Nucl. Sci. Eng. 70(2), 163–176 (1979)

    Article  ADS  Google Scholar 

  21. Z. Chen, Y. Sun, A Global Fitting Method with the R-Matrix code RAC (International Atomic Energy Agency, Vienna, 2019)

    Book  Google Scholar 

  22. Wu. Yican, J. Song, H. Zheng et al., Ann. Nucl. Energy 82, 161–168 (2015)

    Article  ADS  Google Scholar 

  23. T. Sanami, M. Baba, K. Saito et al., Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 458(3), 720–728 (2001)

    Article  ADS  Google Scholar 

  24. M. Matsubayashi, T. Hibiki, K. Mishima et al., Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 463(1–2), 324–330 (2001)

    Article  ADS  Google Scholar 

  25. A. Mančić, J. Fuchs, P. Antici et al., Rev. Sci. Instrum. 79(7), 073301–073301 (2008)

    Article  ADS  Google Scholar 

  26. H. Bai, Z. Wang, L. Zhang et al., Appl. Radiat. Isot. 125, 34–41 (2017)

    Article  Google Scholar 

  27. H. Bai, H. Jiang, Lu. Yi et al., Appl. Radiat. Isot. 152, 180–187 (2019)

    Article  Google Scholar 

  28. H. Bai, Z. Wang, L. Zhang et al., Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 886, 109–118 (2018)

    Article  ADS  Google Scholar 

  29. A.D. Carlson, V.G. Pronyaev, R. Capote et al., Nucl. Data Sheets 148, 143–188 (2018)

    Article  ADS  Google Scholar 

  30. H. Bai, Z. Wang, L. Zhang et al., Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 840, 36–41 (2016)

    Article  ADS  Google Scholar 

  31. V.A. Khryachkov, I.P. Bondarenko, B.D. Kuzminov, et al. Study of (n, α) reaction cross section on a set of light nuclei, in Proc. of XVIII Int. Seminar on Interaction of Neutrons with Nuclei, ISINN-18 (2011)

  32. J. Liu, H. Jiang, Z. Cui et al., Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 1004, 165363 (2021)

    Article  Google Scholar 

  33. Y.-W. Hu, H.-Y. Jiang, Z.-Q. Cui et al., Nucl. Sci. Tech. 32(8), 062001 (2021)

    Article  ADS  Google Scholar 

  34. S. Hilaire A.J. Koning, M.C. Duijvestijn, et al. TALYS-1.95. 2020 [cited 2020 1 November]. http://www.talys.eu/.

  35. Y. Wu, Fusion Eng. Des. 84(7), 1987–1992 (2009)

    Article  Google Scholar 

  36. Wu. Yican, Z. Xie, U. Fischer, Nucl. Sci. Eng. 133(3), 350–357 (1999)

    Article  ADS  Google Scholar 

  37. H. Jiang, Z. Cui, Hu. Yiwei et al., Chin. Phys. C 46(2), 024001 (2022)

    Article  ADS  Google Scholar 

  38. National Nuclear Data Center. [cited 2023 03.22.]. https://www.nndc.bnl.gov/ensdf/.

  39. D. Graham Foster Jr., D.W. Glasgow, Phys. Rev. C 3(2), 576 (1971)

    Article  ADS  Google Scholar 

  40. D. Schmidt, W. Mannhart, Differential cross sections of neutron scattering on 14N at energies between 7.89 MeV and 13.85 MeV. CM-P00048388 (2003)

  41. J. Chardine, G. Haouat, S. Seguin, et al., Neutron elastic and inelastic scattering from N-14 between 7.7 and 13.5 MeV. Report CEA-N-2506, Bruyeres-le-Chatel, France (1986)

  42. J.A. Templon, J.H. Dave, C.R. Gould et al., Nucl. Sci. Eng. 91(4), 451–457 (1985)

    Article  ADS  Google Scholar 

  43. F.G. Perey, W.E. Kinney, Nitrogen neutron elastic and inelastic scattering cross sections from 4.34 to 8.56 MeV. Oak Ridge National Lab., Tenn. (USA) (1974)

  44. EXFOR. Experimental Nuclear Reaction Data. 2020 [cited 2020 1 November]; https://www-nds.iaea.org/exfor/exfor.htm.

  45. W. Scobel, R.W. Fink, M. Bormann, Z. Phys. 197(2), 124–135 (1966)

    Article  ADS  Google Scholar 

  46. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30(2), 257 (1958)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 12075008), the Key Laboratory of Nuclear Data foundation (6142A08200103), and the State Key Laboratory of Nuclear Physics and Technology, Peking University (Grant No. NPT2021KFJ57).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Zhang.

Additional information

Communicated by Aurora Tumino

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Gledenov, Y.M., Cui, Z. et al. Cross section measurement for the 14N(n,α0,1)11B reactions in the 4.5–11.5 MeV neutron energy region. Eur. Phys. J. A 60, 51 (2024). https://doi.org/10.1140/epja/s10050-024-01268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01268-9

Navigation