Skip to main content
Log in

Search for alpha and double alpha decays of natural Nd isotopes accompanied by gamma quanta

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

From 7 naturally occurring Nd isotopes, 5 are unstable in relation to α decay. If an excited level of the daughter nucleus is populated, or the daughter nucleus is unstable, γ quanta can be emitted. We used an ultra-low background spectrometry system with 4 high purity germanium (HPGe) detectors (about 225 cm3 volume each) to search for such decays using a highly purified Nd-containing sample with mass of 2.381 kg. Measurements were performed at the INFN Gran Sasso underground laboratory (with an overburden of about 3600 m w.e.) during 51,237 h. Half-life limits for α decays of 143Nd and 145Nd were determined to be T1/2(143Nd) > 1.1 × 1020 year and T1/2(145Nd) > 2.7 × 1019 year at 90% C.L. This is an increase of three and two orders of magnitude, respectively, compared with the most restrictive values currently given in literature. A limit for α decay of 144Nd to the excited level of 140Ce with Eexc = 1596.2 keV was determined for the first time as T1/2(144Nd → 140Ce*) > 9.3 × 1020 year. Restriction for the α decay of 146Nd to the excited level of 142Ce with Eexc = 641.3 keV was increased by 3 orders of magnitude to T1/2(146Nd → 142Ce*) > 1.4 × 1021 year. For α and 2α decays of 148Nd, first T1/2 limits were set as 4.2 × 1018 year and 2.1 × 1020 year, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data produced in this study are contained in the publication.]

References

  1. E. Rutherford, Uranium radiation and the electrical conduction produced by it. Philos. Mag. (Ser. 5) 47, 109 (1899)

    Google Scholar 

  2. S.A. Giuliani et al., Superheavy elements: Oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019)

    ADS  Google Scholar 

  3. P. De Marcillac et al., Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature 422, 876 (2003)

    ADS  Google Scholar 

  4. F.A. Danevich et al., α activity of natural tungsten isotopes. Phys. Rev. C 67, 014310 (2003)

    ADS  Google Scholar 

  5. P. Belli et al., Search for α decay of natural Europium. Nucl. Phys. A 789, 15 (2007)

    ADS  Google Scholar 

  6. P. Belli et al., First observation of α decay of 190Pt to the first excited level (Eexc = 137.2 keV) of 186Os. Phys. Rev. C 83, 034603 (2011)

    ADS  Google Scholar 

  7. J.W. Beeman et al., First measurement of the partial widths of 209Bi decay to the ground and to the first excited states. Phys. Rev. Lett. 108, 062501 (2012)

    ADS  Google Scholar 

  8. P. Belli et al., Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 55, 140 (2019)

    ADS  Google Scholar 

  9. S.S. Nagorny, M. Laubenstein, S. Nisi, Measurement of 190Pt alpha decay modes with gamma emission using a novel approach with an ultra-low-background high purity germanium detector. J. Instrum. 16, P03027 (2020)

    Google Scholar 

  10. M. Romaniuk et al., New observation of α decay of 190Pt to the first excited level of 186Os. In: Proc. of Science PoS (PANIC2021), 328 (2022)

  11. P. Belli et al., Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta. Phys. Rev. C 102, 024605 (2020)

    ADS  Google Scholar 

  12. F.A. Danevich et al., First search for α decays of naturally occurring Hf nuclides with emission of γ quanta. Eur. J. Phys. A 56, 5 (2020)

    ADS  Google Scholar 

  13. B. Broerman et al., A search for rare and induced nuclear decays in hafnium. Nucl. Phys. A 1012, 122212 (2021)

    Google Scholar 

  14. M. Laubenstein et al., Search for rare alpha and double beta decays of Yb isotopes to excited levels of daughter nuclei. Eur. Phys. J. C 82, 58 (2022)

    ADS  Google Scholar 

  15. V. Caracciolo et al., Search for α decay of naturally occurring Hf-nuclides using a Cs2HfCl6 scintillator. Nucl. Phys. A 1002, 121941 (2020)

    Google Scholar 

  16. R.D. Macfarlane, T.P. Kohman, Natural alpha radioactivity in medium-heavy elements. Phys. Rev. 121, 1758 (1961)

    ADS  Google Scholar 

  17. H.C. Manjunatha, L. Seenappa, K.N. Sridhar, Uncertainties in the empirical formulae for alpha decay half-lives of heavy and superheavy nuclei. Eur. Phys. J. Plus 134, 477 (2019)

    Google Scholar 

  18. R. Gharaei, F.K. Najjar, N. Ghal-Eh, Systematic study on α-decay half-lives: a new dependency of effective sharp radius on α-decay energy. Eur Phys. J. A. 57, 104 (2021)

    ADS  Google Scholar 

  19. G. Saxena, A. Jain, P.K. Sharma, A new empirical formula for α-decay half-life and decay chains of Z = 120 isotopes. Phys. Scripta 96, 125304 (2021)

    ADS  Google Scholar 

  20. Y. Xiao et al., α-Decay with extremely long half-lives. Indian J. Phys. 94, 527 (2020)

    ADS  Google Scholar 

  21. J. Fan, C. Xu, Exploring the half-lives of extremely long-lived α emitters. Chin. Phys. C 46, 054105 (2022)

    ADS  Google Scholar 

  22. O.A.P. Tavares, M.L. Terranova, Partial alpha-decay half-lives for alpha-emitting Osmium isotopes: accurate determinations by a semi-empirical model. Appl. Radiat. Isot. 160, 109034 (2020)

    Google Scholar 

  23. O.A.P. Tavares, E.L. Medeiros, M.L. Terranova, Alpha-decay half-life of Hafnium isotopes reinvestigated by a semi-empirical approach. Appl. Radiat. Isot. 166, 109381 (2020)

    Google Scholar 

  24. H.-M. Liu et al., Predictions of α decay half-lives for even-even superheavy nuclei with 104 ≤ Z ≤ 128 based on two-potential approach within cluster-formation model. Int. J. Mod. Phys. E 28, 1950089 (2019)

    ADS  Google Scholar 

  25. F. Koyuncu, A new potential model for alpha decay calculations. Nucl. Phys. A 1012, 122211 (2021)

    Google Scholar 

  26. L.H. Chien, N.T.T. Phuc, On the Bohr-Sommerfeld quantization condition and assault frequency in a semiclassical model for α decay. Nucl. Phys. A 1018, 122373 (2022)

    Google Scholar 

  27. Xu. Yang-Yang et al., An improved formula for the favored α decay half-lives. Eur. Phys. J. A 58, 16 (2022)

    ADS  Google Scholar 

  28. V.I. Tretyak, Spontaneous double alpha decay: first experimental limit and prospects of investigation. Nucl. Phys. At. Energy 22, 121 (2021)

    ADS  Google Scholar 

  29. Yu. N. Novikov. Some features of nuclei close to the boundaries of nucleon stability. Int. Workshop on U-400 Program. JINR, 15 (1979)

  30. D.N. Poenaru, M. Ivascu, Two alpha, three alpha and multiple heavy-ion radioactivities. J. Physique Lett. 46, 591 (1985)

    Google Scholar 

  31. D.N. Poenaru et al., Systematics of cluster decay modes. Phys. Rev. C 65, 054308 (2002)

    ADS  Google Scholar 

  32. K.P. Santhosh, T.A. Jose, Theoretical investigation on double-α decay from radioactive nuclei. Phys. Rev. C 104, 064604 (2021)

    ADS  Google Scholar 

  33. D. Pathak et al., Systematics of the spontaneous and simultaneous emission of 2α-particles. Eur. Phys. J. Plus 137, 1115 (2022)

    Google Scholar 

  34. K.P. Santhosh, T.A. Jose, N.K. Deepak, Probable chances of radioactive decays from superheavy nuclei 290–304120 within a modified generalized liquid drop model with a Q-value-dependent preformation factor. Phys. Rev. C 105, 054605 (2022)

    ADS  Google Scholar 

  35. M. Chandran et al., α and 2α decay of nuclei in the region 94 ≤ Z ≤ 101 using the modified generalized liquid drop model. Phys. Rev. C 107, 024614 (2023)

    ADS  Google Scholar 

  36. F. Mercier et al., Microscopic description of 2α decay in 212Po and 224Ra isotopes. Phys. Rev. Lett. 127, 012501 (2021)

    ADS  Google Scholar 

  37. VYu. Denisov, Estimation of the double alpha-decay half-life. Phys. Lett. B 835, 137569 (2022)

    Google Scholar 

  38. J. Zhao et al., Microscopic description of α, 2α, and cluster decays of 216–220Rn and 220–224Ra. Phys. Rev. C 107, 034311 (2023)

    ADS  Google Scholar 

  39. J. Meija et al., Isotopic compositions of the elements 2013. Pure Appl. Chem. 88, 293 (2016)

    Google Scholar 

  40. M. Wang et al., The AME 2020 atomic mass evaluation (II). Tables graphs and references. Chin. Phys. C 45, 030003 (2021)

    ADS  Google Scholar 

  41. G. Kauw, Untersuchungen an angereicherten Isotopen auf naturliche Alphastrahlung. Forschungsber. Landes Nordrhein-Westfalen No. 1640 (1966).

  42. A.A. Sonzogni, Nuclear data sheets for A = 144. Nucl. Data Sheets 93, 599 (2001)

    ADS  Google Scholar 

  43. E. Browne, J.K. Tuli, Nuclear data sheets for A = 145. Nucl. Data Sheets 110, 507 (2009)

    ADS  Google Scholar 

  44. Yu. Khazov, A. Rodionov, G. Shulyak, Nuclear data sheets for A = 146. Nucl. Data Sheets 136, 163 (2016)

    ADS  Google Scholar 

  45. C. Stengl, H. Wilsenach, K. Zuber, First search for the α-decay of 146Nd into the first excited state of 142Ce. Int. J. Mod. Phys. E 24, 1550043 (2015)

    ADS  Google Scholar 

  46. N. Nica, Nuclear data sheets for A = 148. Nucl. Data Sheets 117, 1 (2014)

    ADS  Google Scholar 

  47. A.S. Barabash et al., Investigation of ββ decay in 150Nd and 148Nd to the excited states of daughter nuclei. Phys. Rev. C 79, 045501 (2009)

    ADS  Google Scholar 

  48. M. Laubenstein, Screening of materials with high purity germanium detectors at the Laboratori Nazionali del Gran Sasso. Int. J. Mod. Phys. A 32, 1743002 (2017)

    ADS  Google Scholar 

  49. V.I. Tretyak. TS2—the dialog system for processing of one-dimensional spectra. Preprint KINR-90–35 (Kyiv, 1990) (Rus), http://lpd.kinr.kiev.ua/tretyak/tsand/kinr-1990-35.pdf.

  50. R.B. Firestone et al., Table of isotopes, John Wiley & Sons, New York, 8th Edition (1996) and CD update (1998).

  51. G.J. Feldman, R.D. Cousins, Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873 (1998)

    ADS  Google Scholar 

  52. I. Kawrakow et al. The EGSnrc code system: monte carlo simulation of electron and photon transport. In: NRCC Report PIRS-701 (Ottawa, Canada, National Research Council of Canada, 2003) 323 p.

  53. T. Kibedi et al., Evaluation of theoretical conversion coefficients using BrIcc. Nucl. Instrum. Meth. A 589, 202 (2008). https://bricc.anu.edu.au.

  54. M.J. Koskelo, W.C. Burnett, P.H. Cable, An advanced analysis program for alpha-particle spectrometry. Radioact. Radiochem. 7, 18 (1996)

    Google Scholar 

  55. D.N. Poenaru, M. Ivascu, Estimation of the alpha decay half-lives. J. Physique 44, 791 (1983)

    Google Scholar 

  56. B. Buck, A.C. Merchant, S.M. Perez, Ground state to ground state alpha decays of heavy even-even nuclei. J. Phys. G 17, 1223 (1991)

    ADS  Google Scholar 

  57. B. Buck, A.C. Merchant, S.M. Perez, Favoured alpha decays of odd-mass nuclei. J. Phys. G 18, 143 (1992)

    ADS  Google Scholar 

  58. K. Heyde, Basic ideas and concepts in nuclear physics, 3rd edn. (IoP, Bristol, 2004)

    Google Scholar 

  59. F.A. Danevich et al., YAG: Nd crystals as possible detector to search for 2β and α decay of neodymium. Nucl. Instrum. Meth. A 541, 583 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Research Foundation of Ukraine (Grant No. 2020.02/0011), and by the National Academy of Sciences of Ukraine (Reg. No. 0122U002206). V.V. Kobychev is grateful to the Georgia Institute of Technology for kind support within the Universities for Ukraine (U4U) Non-Residential Fellowship Program. We thank A.S. Barabash, S.I. Konovalov and V.I. Umatov for supplying the Nd2O3 material and for earlier useful discussions on measurements devoted to search for 150Nd 2β decay. We are grateful to S. Nisi and F. Ferella for ICP-MS measurements and chemical analyses of the Nd-containing material, and to I.B.-K. Shcherbakov, A. Timonina and V.S. Tinkova for the chemical analyses which were used in our previous work on 2β decay. We thank anonymous reviewers whose comments lead to improvement of the paper. This research was conducted under well-known difficult circumstances and thus we would like to thank all the international collaborators for providing their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernabei.

Additional information

Communicated by Robert Janssens

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, P., Bernabei, R., Boiko, R.S. et al. Search for alpha and double alpha decays of natural Nd isotopes accompanied by gamma quanta. Eur. Phys. J. A 60, 46 (2024). https://doi.org/10.1140/epja/s10050-024-01260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01260-3

Navigation