Skip to main content
Log in

Exploring the 2H(d, p)3H and 2H(d, n)3He fusion reactions within the microscopic multichannel cluster approach in oscillator representation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The 2H(dp)3H and 2H(d, n)3He fusion reactions important for both fundamental and applied physics are studied in the framework of the microscopic multichannel cluster approach formulated in the oscillator representation. The energy dependences of the total astrophysical S factors for the reactions are calculated. The special attention is paid to a comparison with the experimental data extracted by the Trojan horse method. A pretty good agreement between those data and the calculated results is achieved. In accordance with that, recommendations for the 2H(d, p)3H and 2H(d, n)3He total S factors are provided within the approach and discussed in depth. The contributions of partial transfer processes to the energy behavior of the astrophysical S factors are revealed. The most significant channels are also figured out. The effect of the nuclear tensor force on the reactions is considered in detail. The accurate inclusion of the tensor force is shown to be extremely important for a correct description of available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data supporting the main findings of this study are contained in the figures. All datasets generated and/or analysed during the current study are available from the author on reasonable request].

References

  1. P.D. Serpico, S. Esposito, F. Iocco, G. Mangano, G. Miele, O. Pisanti, J. Cosmol. Astropart. Phys. 12, 010 (2004)

    ADS  Google Scholar 

  2. R.H. Cyburt, B.D. Fields, K.A. Olive, T.-H. Yeh, Rev. Mod. Phys. 88, 015004 (2016)

    ADS  Google Scholar 

  3. A. Coc, E. Vangioni, Int. J. Mod. Phys. E 26, 1741002 (2017)

    ADS  CAS  Google Scholar 

  4. C. Pitrou, A. Coc, J.-P. Uzan, E. Vangioni, Phys. Rep. 754, 1 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  5. R.L. Schulte, M. Cosack, A.W. Obst, J.L. Weil, Nucl. Phys. A 192, 609 (1972)

    ADS  CAS  Google Scholar 

  6. A. Krauss, H.W. Becker, H.P. Trautvetter, C. Rolfs, K. Brand, Nucl. Phys. A 465, 150 (1987)

    ADS  Google Scholar 

  7. R.E. Brown, N. Jarmie, Phys. Rev. C 41, 1391 (1990)

    ADS  CAS  Google Scholar 

  8. U. Greife, F. Gorris, M. Junker, C. Rolfs, D. Zahnow, Z. Phys. A 351, 107 (1995)

    ADS  CAS  Google Scholar 

  9. M.A. Hofstee, A.K. Pallone, F.E. Cecil, J.A. McNeil, C.S. Galovich, Nucl. Phys. A 688, 527c (2001)

    ADS  Google Scholar 

  10. D.S. Leonard, H.J. Karwowski, C.R. Brune, B.M. Fisher, E.J. Ludwig, Phys. Rev. C 73, 045801 (2006)

    ADS  Google Scholar 

  11. V.M. Bystritsky, V.V. Gerasimov, A.R. Krylov, S.S. Parzhitskii, P.S. Anan’in, G.N. Dudkin, V.L. Kaminskii, B.A. Nechaev, V.N. Padalko, A.V. Petrov, G.A. Mesyats, M. Filipovicz, J. Wozniak, V.M. Bystritskii, Eur. Phys. J. A 36, 151 (2008)

    ADS  CAS  Google Scholar 

  12. A. Tumino, C. Spitaleri, A.M. Mukhamedzhanov, S. Typel, M. Aliotta, V. Burjan, M. Gimenez del Santo, G.G. Kiss, V. Kroha, Z. Hons, M. La Cognata, L. Lamia, M. Mrazek, R.G. Pizzone, S. Piskor, G.G. Rapisarda, S. Romano, M.L. Sergi, R. Spartà, Phys. Lett. B 700, 111 (2011)

    ADS  CAS  Google Scholar 

  13. A. Tumino, C. Spitaleri, A.M. Mukhamedzhanov, S. Typel, M. Aliotta, V. Burjan, M. Gimenez del Santo, G.G. Kiss, V. Kroha, Z. Hons, M. La Cognata, L. Lamia, M. Mrazek, R.G. Pizzone, S. Piskor, G.G. Rapisarda, S. Romano, M.L. Sergi, R. Spartà, Phys. Lett. B 705, 546 (2011)

    ADS  CAS  Google Scholar 

  14. R.G. Pizzone, C. Spitaleri, C.A. Bertulani, A.M. Mukhamedzhanov, L. Blokhintsev, M. La Cognata, L. Lamia, A. Rinollo, R. Spartá, A. Tumino, Phys. Rev. C 87, 025805 (2013)

    ADS  Google Scholar 

  15. A. Tumino, R. Sparta, C. Spitaleri, A.M. Mukhamedzhanov, S. Typel, R.G. Pizzone, E. Tognelli, S. Degl’Innocenti, V. Burjan, V. Kroha, Z. Hons, M. La Cognata, L. Lamia, J. Mrazek, S. Piskor, P.G. Prada Moroni, G.G. Rapisarda, S. Romano, M.L. Sergi, Astrophys. J. 785, 96 (2014)

    ADS  Google Scholar 

  16. H. Kanada, T. Kaneko, Y.C. Tang, Phys. Rev. C 43, 371 (1991)

    ADS  CAS  Google Scholar 

  17. D.R. Thompson, M. LeMere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977)

    ADS  Google Scholar 

  18. H.M. Hofmann, G.M. Hale, Nucl. Phys. A 613, 69 (1997)

    ADS  Google Scholar 

  19. H.M. Hofmann, G.M. Hale, Phys. Rev. C 77, 044002 (2008)

    ADS  Google Scholar 

  20. A. Deltuva, A.C. Fonseca, Phys. Rev. C 76, 021001(R) (2007)

    ADS  Google Scholar 

  21. K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, D. Baye, Phys. Rev. Lett. 107, 132502 (2011)

    ADS  CAS  PubMed  Google Scholar 

  22. P. Descouvemont, D. Baye, Y. Suzuki, S. Aoyama, K. Arai, AIP Adv. 4, 041011 (2014)

    ADS  Google Scholar 

  23. M. Viviani, L. Girlanda, A. Kievsky, D. Logoteta, L.E. Marcucci, Phys. Rev. Lett. 130, 122501 (2023)

    ADS  CAS  PubMed  Google Scholar 

  24. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J.W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. Degl’Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli, C. Providencia, H. Wolters, J. Soares, C. Grama, J. Rahighi, A. Shotter, M. Lamehi Rachti, Nucl. Phys. A 656, 3 (1999)

    ADS  Google Scholar 

  25. R.H. Cyburt, Phys. Rev. D 70, 023505 (2004)

    ADS  Google Scholar 

  26. P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, At. Data Nucl. Data Tables 88, 203 (2004)

    ADS  CAS  Google Scholar 

  27. Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, H. Utsunomiya, Nucl. Phys. A 918, 61 (2013)

    ADS  CAS  Google Scholar 

  28. A.S. Solovyev, Phys. Rev. C 106, 014610 (2022)

    ADS  MathSciNet  CAS  Google Scholar 

  29. H. Kanada, T. Kaneko, S. Nagata, M. Nomoto, Prog. Theor. Phys. 61, 1327 (1979)

    ADS  CAS  Google Scholar 

  30. A.S. Solovyev, S.Yu. Igashov, Phys. Rev. C 96, 064605 (2017)

    ADS  Google Scholar 

  31. A.S. Solovyev, S.Yu. Igashov, Phys. Rev. C 99, 054618 (2019)

    ADS  CAS  Google Scholar 

  32. D.R. Tilley, H.R. Weller, G.M. Hale, Nucl. Phys. A 541, 1 (1992)

    ADS  Google Scholar 

  33. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    ADS  Google Scholar 

  34. K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. König, T.W. Hänsch, J. Phys. B 29, 177 (1996)

    ADS  CAS  Google Scholar 

  35. J.L. Friar, J. Martorell, D.W.L. Sprung, Phys. Rev. A 56, 4579 (1997)

    ADS  CAS  Google Scholar 

  36. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997)

    ADS  CAS  Google Scholar 

  37. H. Kanada, T. Kaneko, Y.C. Tang, Phys. Rev. C 34, 22 (1986)

    ADS  CAS  Google Scholar 

  38. A. Csótó, G.M. Hale, Phys. Rev. C 55, 2366 (1997)

    ADS  Google Scholar 

  39. E. Hiyama, B.F. Gibson, M. Kamimura, Phys. Rev. C 70, 031001(R) (2004)

    ADS  Google Scholar 

  40. W. Horiuchi, Y. Suzuki, Phys. Rev. C 78, 034305 (2008)

    ADS  Google Scholar 

  41. W. Horiuchi, Y. Suzuki, K. Arai, Phys. Rev. C 85, 054002 (2012)

    ADS  Google Scholar 

  42. S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, Few-Body Syst. 52, 97 (2012)

    ADS  CAS  Google Scholar 

  43. S. Aoyama, D. Baye, Phys. Rev. C 97, 054305 (2018)

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Solovyev.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Arnau Rios Huguet

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyev, A.S. Exploring the 2H(d, p)3H and 2H(d, n)3He fusion reactions within the microscopic multichannel cluster approach in oscillator representation. Eur. Phys. J. A 60, 32 (2024). https://doi.org/10.1140/epja/s10050-024-01253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01253-2

Navigation