Skip to main content
Log in

Exploration of the exotic structure of deformation nuclei by complex momentum representation method

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The discovery of halos, one of the most interesting phenomena in exotic nuclei, has opened up a new field in nuclear physics. To understand this unique property, the level structures of \(^{14}\)B, \(^{15}\)C, \(^{22}\)N, \(^{23}\)O, \(^{24}\)F, and \(^{25}\)Ne are studied with the complex momentum representation (CMR) method. We calculate the single-particle energies of bound and resonant states, and examine the occupation probabilities, density distribution, wavefunctions of the valence neutron occupied levels, and the root mean square (RMS) radii of the single-particle orbits. These results show that \(^{14}\)B, \(^{15}\)C, and \(^{22}\)N are neutron halo nuclei dominated by s-wave configurations in \(-0.08\le \beta _{2}\le 0\), \(0.1\le \beta _{2}\le 0.3\), and \(-0.1\le \beta _{2}\le 0.08\), respectively. Although the last valence neutron of \(^{23}\)O, \(^{24}\)F, and \(^{25}\)Ne all occupy the 2\(s_{1/2}\) orbit (the orbit with a dominant s-wave configuration), the single-particle levels occupied by the valence neutrons are rather bound. It implies a neutron skin structure in \(^{23}\)O, \(^{24}\)F, and \(^{25}\)Ne with spherical shape or prolate deformation. The halo phenomena are not only related to the orbital occupied by the last valence neutron but also to its separation energy. This prediction has reference value for further exploration of neutron halo in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated or analyzed during the current studies are available from the corresponding author on reasonable request. The data are not publicly available due to privacy or ethical restrictions.]

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Phys. Rev. Lett. 55, 2676 (1985)

    ADS  CAS  PubMed  Google Scholar 

  2. I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)

    ADS  CAS  Google Scholar 

  3. J. Meng, S.G. Zhou, J. Phys. G: Nucl. Part. Phys. 42, 093101 (2015)

    ADS  Google Scholar 

  4. T. Nakamura, H. Sakurai, H. Watanabe, Prog. Part. Nucl. Phys. 97, 53 (2017)

    ADS  CAS  Google Scholar 

  5. J. Al-Khalili, Halo Nuclei (San Rafael, Morgan Claypool, 2017)

    Google Scholar 

  6. P.G. Hansen, A.S. Jensen, B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995)

    ADS  CAS  Google Scholar 

  7. T. Aumann, D. Aleksandrov, L. Axelsson et al., Phys. Rev. C 59, 1252 (1999)

    ADS  CAS  Google Scholar 

  8. T. Nakamura, A.M. Vinodkumar, T. Sugimoto et al., Phys. Rev. Lett. 96, 252502 (2006)

    ADS  CAS  PubMed  Google Scholar 

  9. F. Catara, C.H. Dasso, A. Vitturi, Nucl. Phys. A 602, 181 (1996)

    ADS  Google Scholar 

  10. A.S. Jensen, K. Riisager, Phys. Lett. B 480, 39 (2000)

    ADS  CAS  Google Scholar 

  11. M. Fukuda, T. Ichihara, N. Inabe et al., Phys. Lett. B 268, 339 (1991)

    ADS  CAS  Google Scholar 

  12. T. Moriguchi, A. Ozawa, S. Ishimoto et al., Nucl. Phys. A 929, 83 (2014)

    ADS  CAS  Google Scholar 

  13. J.R. Terry, D. Bazin, B.A. Brown et al., Tostevin Phys. Rev. C 69, 054306 (2004)

    ADS  Google Scholar 

  14. R. Kanungo, W. Horiuchi, G. Hagen et al., Phys. Rev. Lett. 117, 102501 (2016)

    ADS  CAS  PubMed  Google Scholar 

  15. K. Tanaka, T. Yamaguchi, T. Suzuki et al., Phys. Rev. Lett. 104, 062701 (2010)

    ADS  CAS  PubMed  Google Scholar 

  16. T. Suzuki, R. Kanungo, O. Bochkarev et al., Nuclear radii of \(^{17,19}\)B and \(^{14}\)Be. Nuclear Phys. A 658, 313 (1999)

    ADS  Google Scholar 

  17. Z.H. Yang, Y. Kubota, A. Corsi et al., Phys. Rev. Lett. 126, 082501 (2021)

    ADS  CAS  PubMed  Google Scholar 

  18. K.J. Cook, T. Nakamura, Y. Kondo et al., Phys. Rev. Lett. 124, 212503 (2020)

    ADS  CAS  PubMed  Google Scholar 

  19. S. Bagchi, R. Kanungo, Y.K. Tanaka et al., Phys. Rev. Lett. 124, 222504 (2020)

    ADS  CAS  PubMed  Google Scholar 

  20. J. Singh, J. Casal, W. Horiuchi, L. Fortunato, A. Vitturi, Phys. Rev. C. 101, 024310 (2020)

    ADS  CAS  Google Scholar 

  21. M.H. Smedberg, T. Baumann, T. Aumann et al., Phys. Lett. B 452, 1 (1999)

    ADS  CAS  Google Scholar 

  22. Z.H. Li et al., Chin. Phys. Lett. 22, 1870 (2005)

    ADS  CAS  Google Scholar 

  23. A. Ozawa, T. Kobayashi, H. Sato et al., Phys. Lett. B 334, 18 (1994)

    ADS  CAS  Google Scholar 

  24. T. Suzuki, H. Geissel, O. Bochkarev et al., Nucl. Phys. A 616, 286 (1997)

    ADS  Google Scholar 

  25. A. Ozawa, K. Matsuta, T. Nagatomo et al., Phys. Rev. C 74, 021301 (2006)

    ADS  Google Scholar 

  26. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    ADS  Google Scholar 

  27. T. Nakamura et al., Phys. Rev. Lett. 103, 262501 (2009)

    ADS  CAS  PubMed  Google Scholar 

  28. N. Kobayashi et al., Phys. Rev. Lett. 112, 242501 (2014)

    ADS  CAS  PubMed  Google Scholar 

  29. Y. Togano, T. Nakamura, Y. Kondo et al., Phys. Lett. B 761, 412–418 (2016)

    ADS  CAS  Google Scholar 

  30. X.X. Sun, J. Zhao, S.G. Zhou, Nucl. Phys. A 1003, 122011 (2020)

    CAS  Google Scholar 

  31. M. Tanaka et al., JPS Conf. Proc. 6, 020026 (2015)

    Google Scholar 

  32. A.N. Abdullah, Pramana-J. Phys. 89, 43 (2017)

    ADS  Google Scholar 

  33. M. Tanaka et al., Acta Phys. Polon. B 48, 461 (2017)

    ADS  Google Scholar 

  34. A.N. Abdullah, Pramana-J. Phys. 94, 154 (2020)

    ADS  CAS  Google Scholar 

  35. D. Bazin et al., Phys. Rev. C 61, 064609 (2000)

    ADS  Google Scholar 

  36. G.A. Lalazissis, D. Vretenar, P. Ring, Eur. Phys. J. A 22, 37 (2004)

    ADS  CAS  Google Scholar 

  37. C. Nociforo, K.L. Jones, L.H. Khiem et al., Phys. Lett. B 605, 79 (2005)

    ADS  CAS  Google Scholar 

  38. J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998)

    ADS  CAS  Google Scholar 

  39. J. Meng, H. Toki, J.Y. Zeng et al., Phys. Rev. C 65, 041302 (2002)

    ADS  Google Scholar 

  40. M. Grasso, S. Yoshida, N. Sandulescu et al., Phys. Rev. C 74, 064317 (2006)

    ADS  Google Scholar 

  41. J. Humblet, B.W. Filippone, S.E. Koonin, Phys. Rev. C 44, 2530 (1991)

    ADS  CAS  Google Scholar 

  42. J.R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (Wiley, New York, 1972)

    Google Scholar 

  43. L.G. Cao, Z.Y. Ma, Phys. Rev. C 66, 024311 (2002)

    ADS  Google Scholar 

  44. G.M. Hale, R.E. Brown, N. Jarmie, Phys. Rev. Lett. 59, 763 (1987)

    ADS  CAS  PubMed  Google Scholar 

  45. E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947)

    ADS  CAS  Google Scholar 

  46. B.N. Lu, E.G. Zhao, S.G. Zhou, Phys. Rev. Lett. 109, 072501 (2012)

    ADS  PubMed  Google Scholar 

  47. B.N. Lu, E.G. Zhao, S.G. Zhou, Phys. Rev. C 88, 024323 (2013)

    ADS  Google Scholar 

  48. Z.P. Li, J. Meng, Y. Zhang et al., Phys. Rev. C 81, 034311 (2010)

    ADS  Google Scholar 

  49. Z.P. Li, Y. Zhang, D. Vretenar et al., Sci. China-Phys. Mech. Astron. 53, 773 (2010)

    ADS  CAS  Google Scholar 

  50. A.U. Hazi, H.S. Taylor, Phys. Rev. A 1, 1109 (1970)

    ADS  Google Scholar 

  51. K. Hagino, N. Van Giai, Nucl. Phys. A 735, 55 (2004)

    ADS  Google Scholar 

  52. B. Gyarmati, A.T. Kruppa, Phys. Rev. C 34, 95 (1986)

    ADS  CAS  Google Scholar 

  53. A.T. Kruppa, P.H. Heenen, H. Flocard et al., Phys. Rev. Lett. 79, 2217 (1997)

    ADS  CAS  Google Scholar 

  54. J.Y. Guo, X.Z. Fang, P. Jiao et al., Phys. Rev. C 82, 034318 (2010)

    ADS  Google Scholar 

  55. S.Y. Wang, Z.L. Zhu, Z.M. Niu, Nucl. Sci. Tech. 27, 122 (2016)

    Google Scholar 

  56. S.S. Zhang, J. Meng, S.G. Zhou et al., Phys. Rev. C 70, 034308 (2004)

    ADS  Google Scholar 

  57. S.S. Zhang, M.S. Smith, Z.S. Kang et al., Phys. Lett. B 730, 30 (2014)

    ADS  CAS  Google Scholar 

  58. M. Shi, X.X. Shi, Z.M. Niu et al., Eur. Phys. J. A 53, 40 (2017)

    ADS  Google Scholar 

  59. N. Li, M. Shi, J.Y. Guo et al., Phys. Rev. Lett. 117, 062502 (2016)

    ADS  PubMed  Google Scholar 

  60. K.M. Ding, M. Shi, J.Y. Guo et al., Phys. Rev. C 98, 014316 (2018)

    ADS  CAS  Google Scholar 

  61. X.N. Cao, Q. Liu, J.Y. Guo, J. Phys. G 45, 085105 (2018)

    ADS  Google Scholar 

  62. X.N. Cao, Q. Liu, Z.M. Niu et al., Phys. Rev. C 99, 024314 (2019)

    ADS  CAS  Google Scholar 

  63. Y. Wang, Z.M. Niu, M. Shi et al., J. Phys. G 46, 125103 (2019)

    ADS  CAS  Google Scholar 

  64. Y.X. Luo, Q. Liu, J.Y. Guo, Phys. Rev. C 104, 014307 (2021)

    ADS  CAS  Google Scholar 

  65. X.N. Cao, K.M. Ding, M. Shi, Q. Liu, J.Y. Guo, Phys. Rev. C 102, 044313 (2020)

    ADS  CAS  Google Scholar 

  66. X.N. Cao, M. Fu, X.X. Zhou et al., Eur. Phys. J Plus 137, 906 (2022)

    CAS  Google Scholar 

  67. T.H. Heng, Y.W. Chu, Nucl. Sci. Tech. 33, 117 (2022)

    CAS  Google Scholar 

  68. Z. Fang, M. Shi, J.Y. Guo et al., Phys. Rev. C 95, 024311 (2017)

    ADS  Google Scholar 

  69. Y.J. Tian, Q. Liu, T.H. Heng et al., Phys. Rev. C 95, 064329 (2017)

    ADS  Google Scholar 

  70. X.N. Cao, Q. Liu, J.Y. Guo, Phys. Rev. C 99, 014309 (2019)

    ADS  CAS  Google Scholar 

  71. Y.X. Luo, Q. Liu, J.Y. Guo et al., J. Phys. G 47, 085105 (2020)

    ADS  CAS  Google Scholar 

  72. X.W. Wang, J.Y. Guo, Phys. Rev. C 104, 044315 (2021)

    ADS  CAS  Google Scholar 

  73. S.Y. Zhai, X.N. Cao, J.Y. Guo, J. Phys. G 49, 065101 (2022)

    ADS  CAS  Google Scholar 

  74. X.N. Cao, X.X. Zhou, M. Fu, X.X. Shi, Nucl. Sci. Tech. 34, 25 (2023)

    CAS  Google Scholar 

  75. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (Benjamin, Reading, 1969)

    Google Scholar 

  76. I. Hamamoto, Phys. Rev. C 72, 024301 (2005)

  77. National Nuclear Data Center, http://www.nndc.bnl.gov

  78. A. Ozawa et al., Nucl. Phys. A 691, 599 (2001)

    ADS  Google Scholar 

  79. A. Ozawa et al., Nucl. Phys. A 693, 32 (2001)

    ADS  Google Scholar 

  80. S. Ahmad, A.A. Usmani, Z.A. Khan, Phys. Rev. C 96, 064602 (2017)

  81. R. Kanungo, I. Tanihata, A. Ozawa, Phys. Lett. B 512, 261 (2001)

    ADS  CAS  Google Scholar 

  82. R. Kanungo, A. Prochazka, M. Uchida et al., Phys. Rev. C 84, 061304(R) (2011)

    ADS  Google Scholar 

  83. R. Kanungo et al., Phys. Rev. Lett. 88, 142502 (2002)

    ADS  PubMed  Google Scholar 

  84. D. Cortina-Gil et al., Phys. Rev. Lett. 93, 062501 (2004)

    ADS  CAS  PubMed  Google Scholar 

  85. R. Chatterjee, R. Shyamb, K. Tsushima, A.W. Thomas, Nucl. Phys. A 913, 116–126 (2013)

    ADS  CAS  Google Scholar 

  86. M. Kimura, Phys. Rev. C 95, 034331 (2017)

    ADS  Google Scholar 

  87. T. Sumi et al., Phys. Rev. C 85, 064613 (2012)

    ADS  Google Scholar 

  88. W. Geithner et al., Phys. Rev. C 71, 064319 (2005)

    ADS  Google Scholar 

  89. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

    ADS  CAS  Google Scholar 

  90. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1992)

    ADS  Google Scholar 

  91. H.T. Fortune, Phys. Rev. C 94, 064307 (2016)

    ADS  Google Scholar 

  92. S. Kahane, S. Raman, J. Dudek, Phys. Rev. C 40, 2282 (1989)

    ADS  CAS  Google Scholar 

  93. I. Hamamoto, Eur. Phys. J. A 13, 21 (2002)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China under Grants No. 12205001 and No. 11935001; the scientific research program of Anhui University of Finance and Economics under Grant No. ACKYC22080.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Neng Cao or Jia-Qun Wang.

Additional information

Communicated by Takashi Nakatsukasa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Yin, GR., Cao, XN. et al. Exploration of the exotic structure of deformation nuclei by complex momentum representation method. Eur. Phys. J. A 60, 26 (2024). https://doi.org/10.1140/epja/s10050-024-01246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01246-1

Mathematics Subject Classification

Navigation