Skip to main content
Log in

High-resolution cross section measurements for neutron interactions on \(^{89}\)Y with incident neutron energies up to 95 keV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The cross section of the \(^{89}\)Y(n, \(\gamma \)) reaction has important implications in nuclear astrophysics and for advanced nuclear technology. Given its neutron magic number N = 50 and a consequent small neutron capture cross section, \(^{89}\)Y represents one of the key nuclides for the stellar s-process. It acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier elements. Moreover, it is located at the overlapping region, where both the weak and main s-process components take place. \(^{89}\)Y, the only stable yttrium isotope, is also used in innovative nuclear reactors. Neutron capture and transmission measurements were performed at the time-of-flight facilities n_TOF at CERN and GELINA at JRC-Geel. Resonance parameters of individual resonances were extracted from a resonance analysis of the experimental transmission and capture yields, up to a neutron incident energy of 95 keV. Even though a comparison with results reported in the literature shows differences in resonance parameters, the present data are consistent with the Maxwellian averaged cross section suggested by the astrophysical database KADoNiS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: This manuscript has associated data in data repository EXFOR.]

References

  1. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547 (1957). https://doi.org/10.1103/RevModPhys.29.547

    Article  ADS  Google Scholar 

  2. J.J. Cowan, C. Sneden, J.E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, F.K. Thielemann, Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93(1), 015002 (2021). https://doi.org/10.1103/RevModPhys.93.015002

    Article  ADS  CAS  Google Scholar 

  3. F.K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253 (2017). https://doi.org/10.1146/annurev-nucl-101916-123246

    Article  ADS  CAS  Google Scholar 

  4. S. Cristrallo et al., Evolution. Nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. II. The FRUITY database. ApJ Suppl. 197, 2 (2011). https://doi.org/10.1088/0067-0049/197/2/17

    Article  CAS  Google Scholar 

  5. M. Busso, R. Gallino, G.J. Wasserburg, Nucleosynthesis in asymptotic giant branch stars relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239 (1999). https://doi.org/10.1146/annurev.astro.37.1.239

    Article  ADS  CAS  Google Scholar 

  6. O. Straniero, R. Gallino, S. Cristallo, s process in low-mass asymptotic giant branch stars. nphysa 777, 311 (2006). https://doi.org/10.1016/j.nuclphysa.2005.01.011

    Article  CAS  Google Scholar 

  7. S. Cristrallo et al., Short-lived isotopes and 23Na production in low mass AGB Stars. Mem. S.A.It 77, 774 (2006)

    ADS  Google Scholar 

  8. C.M. Raiteri, M. Busso, R. Gallino, G. Picchio, S-process nucleosynthesis in massive stars and the weak component. II. Carbon burning and galactic enrichment. Astrophys. J. 371, 665 (1991). https://doi.org/10.1086/169932

    Article  ADS  CAS  Google Scholar 

  9. M. Pignatari, R. Gallino, M. Heil, M. Wiescher, F. Käppeler, F. Herwig, S. Bisterzo, The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys. J. 710(2), 1557 (2010). https://doi.org/10.1088/0004-637X/710/2/1557

    Article  ADS  CAS  Google Scholar 

  10. R. Gallino, C. Arlandini, M. Busso, M. Lugaro, C. Travaglio, O. Straniero, A. Chieffi, M. Limongi, Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the S-process. Astrophys. J. 497(1), 388 (1998). https://doi.org/10.1086/305437

    Article  ADS  CAS  Google Scholar 

  11. M. Busso, R. Gallino, D.L. Lambert, C. Travaglio, V.V. Smith, Nucleosynthesis and mixing on the asymptotic giant branch. III. Predicted and observed s-process abundances. Astrophys. J. 557, 802 (2001). https://doi.org/10.1086/322258

    Article  ADS  CAS  Google Scholar 

  12. S. Cristallo, C. Abia, O. Straniero, L. Piersanti, On the need for the light elements primary process. Astrophys. J. 801, 53 (2015). https://doi.org/10.1088/0004-637X/801/1/53

    Article  ADS  CAS  Google Scholar 

  13. O. Trippella, M. Busso, E. Maiorca, F. Käppeler, S. Palmerini, s-processing in AGB stars revisited. I. Does the main component constrain the neutron source in the 13C pocket? Astrophys. J. 787, 41 (2014). https://doi.org/10.1088/0004-637x/787/1/41

    Article  ADS  Google Scholar 

  14. NASA Technical Note, NASA TN D-4615 (1968)

  15. M. Streit, W. Wiesenack, T. Tverberg, C. Hellwig, B. Oberländer, Yttrium stabilised zirconia inert matrix fuel irradiation at an international research reactor. J. Nucl. Mater. 352, 349 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.067

    Article  ADS  CAS  Google Scholar 

  16. N. Yanagi, Y. Terazaki, S. Ito, K. Kawai, Y. Seino, T. Ohinata, Y. Tanno, K. Natsume, S. Hamaguchi, H. Noguchi, H. Tamura, T. Mito, H. Hashizume, A. Sagara, Progress of the design of HTS magnet option and R &D activities for the helical fusion reactor. IEEE Trans. Appl. Supercond. 24, 4202805 (2014). https://doi.org/10.1109/TASC.2013.2292775

    Article  Google Scholar 

  17. J. Morgenstern, R. Alves, J. Julien, C. Samour, Paramètres des résonances et fonctions densités s0 et s1 pour cl, 51v, 89y, zr, la, 141pr et 209bi. Nucl. Phys. A 123, 561 (1969). https://doi.org/10.1016/0375-9474(69)91005-7

    Article  ADS  Google Scholar 

  18. J. Morgenstern, S. De Barros, A. Bloćh, P. Chevillon, V. Huynh, H. Jackson, J. Julien, C. Lopata, C. Samour, Analyse des paramètres de résonances du cobalt et du manganèse, induites par des neutrons d’énergie inférieure á 120 kev. Nucl. Phys. A 102, 602 (1967). https://doi.org/10.1016/0375-9474(67)90398-3

    Article  ADS  CAS  Google Scholar 

  19. H.S. Camarda, High resolution neutron total cross section measurement of \(^{89}\rm Y \). Phys. Rev. C 16, 1803 (1977). https://doi.org/10.1103/PhysRevC.16.1803

    Article  ADS  CAS  Google Scholar 

  20. H. Agrawal, J. Garg, J. Harvey, 89Y + n resonances for E = 10–740 keV and intermediate structure. Nucl. Phys. A 501, 18 (1989). https://doi.org/10.1016/0375-9474(89)90563-0

    Article  ADS  Google Scholar 

  21. S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron cross sections (Elsevier, 1981). https://doi.org/10.1016/B978-0-12-509701-7.X5001-9. Volume 1: Neutron Resonance Parameters and Thermal Cross Sections, Part A: Z=1-60

  22. P. Schillebeeckx, B. Becker, Y. Danon, K. Guber, H. Harada, J. Heyse, A.R. Junghans, S. Kopecky, C. Massimi, M.C. Moxon, N. Otuka, I. Sirakov, K. Volev, Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl. Data Sheets 113, 3054 (2012). https://doi.org/10.1016/j.nds.2012.11.005

    Article  ADS  CAS  Google Scholar 

  23. S. Raman, O. Shahal, A.Z. Hussein, G.G. Slaughter, J.A. Harvey, Enhanced primary dipole transitions in the \(^{89}\rm Y (n,\gamma )\) reaction. Phys. Rev. C 23, 1979 (1981). https://doi.org/10.1103/PhysRevC.23.1979

    Article  ADS  CAS  Google Scholar 

  24. J.W. Boldeman, B.J. Allen, A.R.L. de Musgrove, R.L. Macklin, The neutron capture cross section of yttrium-89. Nucl. Sci. Eng. 64, 744 (1977). https://doi.org/10.13182/NSE77-A27103

    Article  ADS  CAS  Google Scholar 

  25. O. Iwamoto, N. Iwamoto, S. Kuneida, F. Minato, S. Nakayama, Y. Abe, K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, S. Chiba, N. Otuka, J.C. Sublet, H. Iwamoto, K. Yamamoto, Y. Nagaya, K. Tada, C. Konno, N. Matsuda, K. Yokoyama, H. Taninaka, A. Oizumi, S. Okita, G. Chiba, S.K. Satoshi Sato, Masayuki Ohta, Japanese evaluated nuclear data library version 5: JENDL-5. J. Nucl. Sci. Technol. 60, 1 (2023). https://doi.org/10.1080/00223131.2022.2141903. https://wwwndc.jaea.go.jp/jendl/j5/j5.html

  26. A.J.M. Plompen et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A 56, 181 (2020). https://doi.org/10.1140/epja/s10050-020-00141-9. https://www.oecd-nea.org/dbdata/jeff/jeff33/

  27. D.A. Brown et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1 (2018). https://doi.org/10.1016/j.nds.2018.02.001. https://www.nndc.bnl.gov/endf/. Special Issue on Nuclear Reaction Data

  28. S.F. Mughabghab, Atlas of Neutron Resonances (Elsevier, 2006)

    Google Scholar 

  29. S.F. Mughabghab, Atlas of Neutron Resonances (Elsevier, 2018). https://doi.org/10.1016/c2015-0-00522-6. Volume 1: Resonance Properties and Thermal Cross Sections Z=1-60

  30. F. Käppeler, W.R. Zhao, H. Beer, U. Ratzel, 88Sr and 89Y: The s-process at magic neutron number N = 50. Astrophys. J. 355, 348 (1990). https://doi.org/10.1086/168769

    Article  ADS  Google Scholar 

  31. A.R. de L. Musgrove, B.J. Allen, J.W. Boldeman, R.L. Macklin, in Inter. Conf. Neutron Physics and Nuclear Data for Reactors and other Applied Purposes (OECD, Paris, 1978), p. 449. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord &RN=11524511

  32. S. Goriely. Hauser-Feshbach rates for neutron capture reactions (version 8/29/2005) (2005)

  33. T. Rauscher, F.K. Thielemann, Astrophysical reaction rates from statistical model calculations. Atomic Data Nucl. Data Tables 75, 1 (2000). https://doi.org/10.1006/adnd.2000.0834

    Article  ADS  CAS  Google Scholar 

  34. I. Dillmann, R. Plag, F. Käppeler, A. Mengoni, C. Heinz, M. Pignatari, The new KADoNiS v1.0 and its influence on the weak \(s\)-process nucleosynthesis. PoS NIC XIII, 057 (2015). https://doi.org/10.22323/1.204.0057

  35. B. Allen, J. Gibbons, R. Macklin, Nucleosynthesis and neutron-capture cross sections. Adv. Nucl. Phys. 4, 205 (1971)

    Article  CAS  Google Scholar 

  36. C. Guerrero et al., Performance of the neutron time-of-flight facility n_TOF at CERN. Eur. Phys. J. A 49(2), 27 (2013). https://doi.org/10.1140/epja/i2013-13027-6. http://cds.cern.ch/record/1709388

  37. U. Abbondanno, et al., CERN n_TOF facility: Performance report. Tech. Rep. CERN-SL-2002-053 ECT, CERN (2003). http://cds.cern.ch/record/601511/

  38. A. Bensussan, J. Salome, Gelina: a modern accelerator for high resolution neutron time of flight experiments. Nucl. Instrum. Methods 155, 11 (1978). https://doi.org/10.1016/0029-554X(78)90181-7

    Article  ADS  CAS  Google Scholar 

  39. W. Mondelaers, P. Schillebeeckx, GELINA, a neutron time-of-flight facility for high-resolution neutron data measurements. Notizario Neutroni e Luce di Sincrotrone 11, 19 (2006)

    Google Scholar 

  40. C. Borcea et al., Results from the commissioning of the n_TOF spallation neutron source at CERN. Nucl. Instrum. Methods A 513, 524 (2003). https://doi.org/10.1016/S0168-9002(03)02072-2

    Article  ADS  CAS  Google Scholar 

  41. S. Marrone et al., A low background neutron flux monitor for the n_TOF facility at CERN. Nucl. Instrum. Methods A 517, 389 (2004). https://doi.org/10.1016/j.nima.2003.09.060

    Article  ADS  CAS  Google Scholar 

  42. D. Tronc, J.M. Salomé, K.H. Böckhoff, A new pulse compression system for intense relativistic electron beams. Nucl. Instrum. Methods A 228, 217 (1985). https://doi.org/10.1016/0168-9002(85)90263-3

    Article  ADS  CAS  Google Scholar 

  43. J.M. Salome, R. Cools, Neutron producing targets at GELINA. Nucl. Instrum. Methods 179, 13 (1981). https://doi.org/10.1016/0029-554X(81)91156-3

    Article  ADS  CAS  Google Scholar 

  44. I. Sirakov, B. Becker, R. Capote, E. Dupont, S. Kopecky, C. Massimi, P. Schillebeeckx, Results of total cross section measurements for \(^{197}\)au in the neutron energy region from 4 to 108 kev at gelina. Eur. Phys. J. A 49, 144 (2013). https://doi.org/10.1140/epja/i2013-13144-2

    Article  ADS  CAS  Google Scholar 

  45. A. Borella, F. Gunsing, M. Moxon, P. Schillebeeckx, P. Sigler, High-resolution transmission and capture measurements of the nucleus 206Pb. PRC 76, 014605 (2007). https://doi.org/10.1103/PhysRevC.76.01.014605

    Article  ADS  Google Scholar 

  46. A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, R. Wynants, The use of C\(_6\)D\(_6\) detectors for neutron induced capture cross-section measurements in the resonance region. Nucl. Instrum. Methods A 577, 626 (2007). https://doi.org/10.1016/j.nima.2007.03.034

    Article  ADS  CAS  Google Scholar 

  47. R.L. Macklin, J.H. Gibbons, Capture-cross-section studies for 30–220-keV neutrons using a new technique. Phys. Rev. 159, 1007 (1967). https://doi.org/10.1103/PhysRev.159.1007

    Article  ADS  CAS  Google Scholar 

  48. U. Abbondanno et al., New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl. Instrum. Methods A 521, 454 (2004). https://doi.org/10.1016/j.nima.2003.09.066

    Article  ADS  CAS  Google Scholar 

  49. R.L. Macklin, J. Halperin, R.R. Winters, Gold neutron-capture cross section from 3 to 550 keV. Phys. Rev. C 11, 1270 (1975). https://doi.org/10.1103/PhysRevC.11.1270

    Article  ADS  CAS  Google Scholar 

  50. N. Yamamuro, T. Hayase, T. Doi, Y. Fujita, K. Kobayashi, R.C. Block, Reliability of the weighting function for the pulse height weighting technique. Nucl. Instrum. Methods 133, 531 (1976). https://doi.org/10.1016/0029-554X(76)90442-0

    Article  ADS  CAS  Google Scholar 

  51. C. Massimi et al., Measurement of the 197Au(n,\(\gamma \)) cross section at n TOF: towards a new standard. International Conference on Nuclear Data for Science and Technology 2007 (2007). https://doi.org/10.1051/ndata:07554

  52. B. Becker, C. Bastian, F. Emiliani, F. Gunsing, J. Heyse, K. Kauwenberghs, S. Kopecky, C. Lampoudis, C. Massimi, N. Otuka, P. Schillebeeckx, I. Sirakov, Data reduction and uncertainty propagation of time-of-flight spectra with AGS. J. Instrum. 7, 11002 (2012). https://doi.org/10.1088/1748-0221/7/11/P11002

    Article  Google Scholar 

  53. F. Gunsing, P. Schillebeeckx, V. Semkova, Exfor data in resonance region and spectrometer response function. Tech. Rep. INDC(NDS)-0647, IAEA (2013). https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/037/45037228.pdf?r=1

  54. C. Reich, M.S. Moore, R-matrix theory of nuclear reactions. Phys. Rev. 111, 929 (1958). https://doi.org/10.1103/PHYSREV.111.929

    Article  ADS  CAS  Google Scholar 

  55. A. Lane, R.G. Thomas, R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257 (1958). https://doi.org/10.1103/RevModPhys.30.257

    Article  ADS  MathSciNet  Google Scholar 

  56. M.C. Moxon, J.B. Brisland, GEEL REFIT, A least squares fitting program for resonance analysis of neutron transmission and capture data computer code. Tech. Rep. AEA-InTec-0630, AEA Technology (2008)

  57. N.M. Larson, Updated users’ guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes’ equations. Tech. Rep. ORNL/TM-9179/R8, Oak Ridge National Laboratory (2008). https://info.ornl.gov/sites/publications/files/Pub13056.pdf

  58. H. Derrien et al., Neutron resonance parameters of 238u and the calculated cross sections from the reich-moore analysis of experimental data in the neutron energy range from 0 kev to 20 kev. Tech. Rep. ORNL/TM-2005/241, Oak Ridge National Laboratory (2005)

  59. T. Katabuchi et al., Discovery of a new low energy neutron resonance of \(^{89}\)Y. EPJ A 57, 4 (2021). https://doi.org/10.1140/epja/s10050-020-00320-8

    Article  ADS  CAS  Google Scholar 

  60. R.L. Macklin, J.H. Gibbons, Neutron capture data at stellar temperatures. Rev. Mod. Phys. 37, 166 (1965). https://doi.org/10.1103/RevModPhys.37.166

    Article  ADS  CAS  Google Scholar 

  61. H. Beer, F. Voss, R.R. Winters, On the calculation of Maxwellian-averaged capture cross-sections. Astrophys. J. Suppl. Ser. 80(1), 403 (1992). https://doi.org/10.1086/191669

    Article  ADS  CAS  Google Scholar 

  62. A. Mengoni, T. Otsuka, M. Ishihara, Direct radiative capture of \(p\)-wave neutrons. Phys. Rev. C 52, R2334 (1995). https://doi.org/10.1103/PhysRevC.52.R2334

    Article  ADS  CAS  Google Scholar 

  63. S. Cristrallo et al., Evolution. Nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys. J. 696, 797 (2009). https://doi.org/10.1088/0004-637X/696/1/797

    Article  ADS  CAS  Google Scholar 

  64. D. Vescovi, S. Cristrallo, M. Busso, N. Liu, Magnetic-buoyancy-induced mixing in AGB stars: presolar SiC grains. Astrophys. J. Lett. 897, 25 (2020). https://doi.org/10.3847/2041-8213/ab9fa1

    Article  ADS  CAS  Google Scholar 

  65. D. Vescovi, S. Cristrallo, S. Palmierini, C. Abia, M. Busso, Magnetic-buoyancy-induced mixing in AGB stars: fluorine nucleosynthesis at different metallicities. Astron. Astrophys. 652, 100 (2021). https://doi.org/10.1051/0004-6361/202141173

    Article  ADS  CAS  Google Scholar 

  66. S. Cristrallo et al., The importance of the 13C(\(\alpha \), n)16O reaction in asymptotic giant branch stars. Astrophys. J. 859, 105 (2018). https://doi.org/10.3847/1538-4357/aac177

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Community Seventh Framework Programme FP7/2007–2011 under the Project CHANDA (Grant No. 605203), by the European Commission within HORIZON2020 via the EURATOM project EUFRAT for transnational access and by the funding agencies of the participating institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tagliente.

Additional information

Communicated by Robert Janssens.

Appendix A: List of mishaps in evaluated data libraries

Appendix A: List of mishaps in evaluated data libraries

In JENDL-5.0 [25]

  1. 1.

    The neutron width \(\Gamma _n\) for the 7483 eV resonance is given as 0.654 eV and should be 65.4 eV.

In ENDF [27] and JEFF-3.3 [26]

  1. 1.

    There is a group of resonances, i.e. the resonances at 51703, 52035, 55330, 56582, 62459, 69070, 74490, 75107, 75977, 83180, 85210, 89173, and 94125 eV, with neutron widths that are reduced by a factor 1000, e.g. the \(\Gamma _n\) for the 51703 eV resonance is given as 0.06 eV and should be 60 eV.

  2. 2.

    The energy for the 53865 eV resonance is given as 52865 eV.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagliente, G., Milazzo, P.M., Paradela, C. et al. High-resolution cross section measurements for neutron interactions on \(^{89}\)Y with incident neutron energies up to 95 keV. Eur. Phys. J. A 60, 21 (2024). https://doi.org/10.1140/epja/s10050-024-01243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01243-4

Navigation