Skip to main content
Log in

Nucleon–nucleon short-range correlation, superfluidity and neutron star cooling

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The observation of neutron star (NS) cooling provides a critical approach for gaining a deeper understanding of the dense matter in the NS interior. The cooling relies on many factors, including the symmetry energy of dense matter, superfluidity, and neutrino emissivity. I review the recent progress in the exploration of NS cooling and superfluidity, in particular the effects of short-range correlation (SRC) on the superfluidity, neutrino emissivity, and hence the cooling of NSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data was generated.]

References

  1. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1 (Springer, 2006)

    Google Scholar 

  2. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Astrophys. J. Supp. 155, 623–650 (2004)

    ADS  CAS  Google Scholar 

  3. D.G. Yakovlev, K.P. Levenfish, Y.A. Shibanov, Phys. Usp. 42, 737–778 (1999)

    ADS  CAS  Google Scholar 

  4. D.G. Yakovlev, C.J. Pethick, Annu. Rev. Astron. Astrophys. 42, 169–210 (2004)

    ADS  CAS  Google Scholar 

  5. D. Page, U. Geppert, F. Weber, Nucl. Phys. A 777, 497–530 (2006)

    ADS  Google Scholar 

  6. C.O. Heinke, W.C.G. Ho, Astrophys. J. Lett. 719, L167–L171 (2010)

    ADS  Google Scholar 

  7. R.A. Fesen et al., Astrophys. J. 645, 283–292 (2006)

    ADS  Google Scholar 

  8. P.S. Shternin et al., Mon. Not. R. Astron. Soc. 412, L108–L112 (2011)

    ADS  Google Scholar 

  9. S.-H. Yang, C.-M. Pi, X.-P. Zheng, Astrophys. J. Lett. 735, L29 (2011)

    ADS  Google Scholar 

  10. A. Sedrakian, Astron. Astrophys. 555, L10 (2013)

    ADS  Google Scholar 

  11. D. Blaschke, H. Grigorian, D.N. Voskresensky, F. Weber, Phys. Rev. C 85, 022802(R) (2012)

    ADS  Google Scholar 

  12. D. Blaschke, H. Grigorian, D.N. Voskresensky, Phys. Rev. C 88, 065805 (2013)

    ADS  Google Scholar 

  13. W.G. Newton, K. Murphy, J. Hooker, B.-A. Li, Astrophys. J. Lett. 779, L4 (2013)

    ADS  Google Scholar 

  14. T. Noda et al., Astrophys. J. 765, 1 (2013)

    ADS  Google Scholar 

  15. A. Bonanno, M. Baldo, G.F. Burgio, V. Urpin, Astron. Astrophys. 561, L5 (2014)

    ADS  Google Scholar 

  16. D. Page, M. Prakash, J.M. Lattimer, A.W. Steiner, Phys. Rev. Lett. 106, 081101 (2011)

    ADS  PubMed  Google Scholar 

  17. B. Posselt, G.G. Pavlov, V. Suleimanov, O. Kargaltsev, Astrophys. J. 779, 186 (2013)

    ADS  Google Scholar 

  18. S. Beloin, S. Han, A.W. Steiner, D. Page, Phys. Rev. C 97, 015804 (2018)

    ADS  CAS  Google Scholar 

  19. U. Lombardo, H.-J. Schulze, Physics of neutron star interiors, in Lecture Notes in Physics, vol. 578, ed. by D. Blaschke, N.K. Glendenning, A. Sedrakian (Springer-Verlag, Berlin, 2001), pp.30–54

    Google Scholar 

  20. R. Subedi, Science 320, 1476–1477 (2008)

    ADS  CAS  PubMed  Google Scholar 

  21. O. Hen et al., Science 346, 614–617 (2014)

    ADS  CAS  PubMed  Google Scholar 

  22. J.M. Dong, Mon. Not. R. Astron. 500, 1505–1511 (2021)

    ADS  CAS  Google Scholar 

  23. X.L. Shang, P. Wang, W. Zuo, J.M. Dong, Phys. Lett. B 811, 135963 (2020)

    CAS  Google Scholar 

  24. J.M. Dong, U. Lombardo, H.F. Zhang, W. Zuo, Astrophys. J. 817, 6 (2016)

    ADS  Google Scholar 

  25. O. Hen, G.A. Miller, E. Piasetzky, L.B. Weinstein, Rev. Mod. Phys. 89, 045002 (2017)

    ADS  Google Scholar 

  26. M. Duer et al., Nature 560, 617–621 (2018)

    Google Scholar 

  27. Bao-An. Li, Bao-Jun. Cai, Lie-Wen. Chen, Xu. Jun, Prog. Part. Nucl. Phys. 99, 29–119 (2018)

    ADS  CAS  Google Scholar 

  28. J. Kahlbow, Eur. Phys. J. A 59, 128 (2023)

    ADS  CAS  Google Scholar 

  29. A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, London, 1967)

    Google Scholar 

  30. J.M. Dong, U. Lombardo, W. Zuo, Phys. Rev. C 87, 062801(R) (2013)

    ADS  Google Scholar 

  31. J.M. Dong, L.J. Wang, W. Zuo, Astrophys. J. 862, 67 (2018)

    ADS  Google Scholar 

  32. S. Maurizio, J.W. Holt, P. Finelli, Phys. Rev. C 90, 044003 (2014)

    ADS  CAS  Google Scholar 

  33. S.S. Zhang, L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 93, 044329 (2016)

    ADS  Google Scholar 

  34. A. Rios, A. Polls, W.H. Dickhoff, J. Low Temp. Phys. 189, 234–249 (2017)

  35. C. Drischler, T. Krüger, K. Hebeler, A. Schwenk, Phys. Rev. C 95, 024302 (2017)

    ADS  Google Scholar 

  36. N. Chamel, J. Astrophys. Astr. 38, 43 (2017)

    ADS  Google Scholar 

  37. S. Ramanan, M. Urban, Eur. Phys. J. Spec. Top. 230, 567–577 (2021)

    CAS  Google Scholar 

  38. A. Sedrakian, J.W. Clark, Eur. Phys. J. A 55, 167 (2019)

  39. B.D. Day, Rev. Mod. Phys. 50, 495–521 (1978)

    ADS  CAS  Google Scholar 

  40. W. Zuo, I. Bombaci, U. Lombardo, Phys. Rev. C 60, 024605 (1999)

    ADS  Google Scholar 

  41. A.B. Migdal, Sov. Phys. JETP 5, 333 (1957)

    CAS  Google Scholar 

  42. J.M. Luttinger, Phys. Rev. 119, 1153 (1960)

    ADS  MathSciNet  Google Scholar 

  43. M. Baldo, J. Cugnon, A. Lejeune, U. Lombardo, Nucl. Phys. A 536, 349–365 (1992)

    ADS  Google Scholar 

  44. W. Zuo, C.X. Cui, U. Lombardo, H.-J. Schulze, Phys. Rev. C 78, 015805 (2008)

    ADS  Google Scholar 

  45. A. Rios, D. Ding, H. Dussan, W.H. Dickhoff, S.J. Witte, A. Polls, J. Phys.: Conf. Series 940, 012014 (2018)

    Google Scholar 

  46. D. Ding, A. Rios, H. Dussan, W.H. Dickhoff, S.J. Witte, A. Carbone, A. Polls, Phys. Rev. C 94, 025802 (2016)

    ADS  Google Scholar 

  47. M.E. Gusakov, A.I. Chugunov, E.M. Kantor, Phys. Rev. Lett. 112, 151101 (2014)

    ADS  PubMed  Google Scholar 

  48. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804–1828 (1998)

    ADS  CAS  Google Scholar 

  49. A. Li, J.M. Dong, J.B. Wang, R.X. Xu, Astrophys. J. Supp. 223, 16 (2016)

    ADS  Google Scholar 

  50. W. Guo, J.M. Dong, X. Shang, H.F. Zhang, W. Zuo, M. Colonna, U. Lombardo, Nucl. Phy. A 986, 18–25 (2019)

    ADS  CAS  Google Scholar 

  51. L. P. Kadanoff, G. Baym, 1962, Quantum Statistical Mechanics, (New York)

  52. E.F. Brown, A. Cumming, F.J. Fattoyev, C.J. Horowitz, D. Page, S. Reddy, Phys. Rev. Lett. 120, 182701 (2018)

    ADS  CAS  PubMed  Google Scholar 

  53. D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel, Phys. Rep. 354, 1–155 (2001)

    ADS  CAS  Google Scholar 

  54. L. Frankfurt, M. Sargsian, M. Strikman, Int. J. Mod. Phys. A 23, 2991–3055 (2008)

    ADS  CAS  Google Scholar 

  55. L.B. Leinson, A. Pérez, Phys. Lett. B 638, 114 (2006)

    ADS  CAS  Google Scholar 

  56. E. Flowers, M. Ruderman, P. Sutherland, Astrophys. J. 205, 541 (1976)

    ADS  CAS  Google Scholar 

  57. A. Sedrakian, H. Müther, P. Schuck, Phys. Rev. C 76, 055805 (2007)

    ADS  Google Scholar 

  58. E.E. Kolomeitsev, D.N. Voskresensky, Phys. Rev. C 77, 065808 (2008)

    ADS  Google Scholar 

  59. L.B. Leinson, Phys. Rev. C 78, 015502 (2008)

    ADS  Google Scholar 

  60. A.W. Steiner, S. Reddy, Phys. Rev. C 79, 015802 (2009)

    ADS  Google Scholar 

  61. A. Sedrakian, Phys. Rev. C 86, 025803 (2012)

    ADS  Google Scholar 

  62. http://www.astroscu.unam.mx/neutrones/home.html

  63. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Astrophys. J. 707, 1131–1140 (2009)

    ADS  CAS  Google Scholar 

  64. S. Dall’Osso, S.N. Shore, L. Stella, Mon. Not. R. Astron. Soc. 398, 1869–1885 (2009)

    ADS  Google Scholar 

  65. S.K. Lander, D.I. Jones, Mon. Not. R. Astron. Soc. 481, 4169–4193 (2018)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 12222511, the stable support program for basic research youth teams of the Chinese Academy of Sciences YSBR-088, the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB34000000, and by the Continuous Basic Scientific Research Project under Grant No. WDJC-2019-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Dong.

Additional information

Communicated by Jérôme Margueron.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J.M. Nucleon–nucleon short-range correlation, superfluidity and neutron star cooling. Eur. Phys. J. A 60, 34 (2024). https://doi.org/10.1140/epja/s10050-024-01242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01242-5

Navigation