Skip to main content
Log in

Crust-core transition of a neutron star: effect of the temperature under strong magnetic fields

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The effect of temperature on the crust-core transition of a magnetar is studied. The thermodynamical spinodals are used to calculate the transition region within a relativistic mean-field approach for the equation of state. Magnetic fields with intensities \(5\times 10^{16}\) G and \(5\times 10 ^{17}\) G are considered. It is shown that the effect on the extension of the crust-core transition is washed away for temperatures above \(10^{9}\) K for magnetic field intensities \( \lesssim 5\times 10^{16}\) G but may still persist if a magnetic field as high as \(5\times 10 ^{17}\) G is considered. For temperatures below that value, the effect of the magnetic field on crust-core transition is noticeable and grows as the temperature decreases and, in particular, it is interesting to identify the existence of disconnected non-homogenous matter above the \(B=0\) crust core transition density. Models with different symmetry energy slopes at saturation show quite different behaviors. In particular, a model with a large slope, as suggested by the recent results of PREX-2, predicts the existence of up to four disconnected regions of non-homogeneous matter above the zero magnetic field crust-core transition density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and all the results obtained are either numerical or analytical, hence, there is no associated data. However, the data used to make the Figures can be requested by the authors.]

Notes

  1. SGR/APX online catalogue, http://www.physics.mcgill.ca/~pulsar/magnetar/main.html.

References

  1. V.M. Kaspi, A. Beloborodov, Ann. Rev. Astron. Astrophys. 55, 261 (2017). https://doi.org/10.1146/annurev-astro-081915-023329

    Article  ADS  Google Scholar 

  2. R.C. Duncan, C. Thompson, Astrophys. J. Lett. 392, L9 (1992). https://doi.org/10.1086/186413

    Article  ADS  Google Scholar 

  3. B. Paczynski, Acta Astron. 42, 145 (1992)

    ADS  Google Scholar 

  4. S.A. Olausen, V.M. Kaspi, Astrophys. J. Suppl. 212, 6 (2014). https://doi.org/10.1088/0067-0049/212/1/6

    Article  ADS  Google Scholar 

  5. J. Fang, H. Pais, S. Avancini, C. Providência, Phys. Rev. C 94, 6 (2016)

    Google Scholar 

  6. J. Fang, H. Pais, S. Pratapsi, S. Avancini, J. Li, C. Providência, Phys. Rev. C 95, 4 (2017)

    Google Scholar 

  7. J. Fang, H. Pais, S. Pratapsi, C. Providência, Phys. Rev. C 95(6), 062801 (2017)

    Article  ADS  Google Scholar 

  8. S. Avancini, B.P. Bertolino, A. Rabhi, J. Fang, H. Pais, C. Providência, Phys. Rev. C 98(2), 025805 (2018). https://doi.org/10.1103/PhysRevC.98.025805

    Article  ADS  Google Scholar 

  9. A. Rabhi, C. Providencia, J. Da Providencia, Phys. Rev. C 79, 015804 (2009). https://doi.org/10.1103/PhysRevC.79.015804

    Article  ADS  Google Scholar 

  10. A. Rabhi, C. Providencia, J. Da Providencia, Phys. Rev. C 80, 025806 (2009). https://doi.org/10.1103/PhysRevC.80.025806

    Article  ADS  Google Scholar 

  11. Y.J. Chen, Phys. Rev. C 95(3), 035807 (2017). https://doi.org/10.1103/PhysRevC.95.035807

    Article  ADS  Google Scholar 

  12. D. Chatterjee, F. Gulminelli, D.P. Menezes, JCAP 03, 035 (2019). https://doi.org/10.1088/1475-7516/2019/03/035

    Article  ADS  Google Scholar 

  13. S.S. Avancini, S. Chiacchiera, D.P. Menezes, C. Providencia, Phys. Rev. C 82, 055807 (2010). https://doi.org/10.1103/PhysRevC.82.055807. [Erratum: Phys. Rev. C 85, 059904 (2012)]

  14. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537(1), 351 (2000)

    Article  ADS  Google Scholar 

  15. M.A. Perez-Garcia, C. Providencia, A. Rabhi, Phys. Rev. C 84, 045803 (2011). https://doi.org/10.1103/PhysRevC.84.045803

    Article  ADS  Google Scholar 

  16. A.E. Broderick, M. Prakash, J.M. Lattimer, Phys. Lett. B 531, 167 (2002). https://doi.org/10.1016/S0370-2693(01)01514-3

    Article  ADS  Google Scholar 

  17. A. Rabhi, C. Providência, J.D. Providência, J. Phys. G Nucl. Part. Phys. 35(12), 125201 (2008)

    Article  ADS  Google Scholar 

  18. D. Lai, S.L. Shapiro, ApJ 383, 745 (1991). https://doi.org/10.1086/170831

    Article  ADS  Google Scholar 

  19. M. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  20. C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001). https://doi.org/10.1086/321370

    Article  ADS  Google Scholar 

  21. D. Chatterjee, T. Elghozi, J. Novak, M. Oertel, Mon. Not. R. Astron. Soc. 447, 3785 (2015). https://doi.org/10.1093/mnras/stu2706

    Article  ADS  Google Scholar 

  22. N. Chamel, R.L. Pavlov, L.M. Mihailov, C.J. Velchev, Z.K. Stoyanov, Y.D. Mutafchieva, M.D. Ivanovich, J.M. Pearson, S. Goriely, Phys. Rev. C 86, 055804 (2012). https://doi.org/10.1103/PhysRevC.86.055804

    Article  ADS  Google Scholar 

  23. N. Chamel, Z.K. Stoyanov, L.M. Mihailov, Y.D. Mutafchieva, R.L. Pavlov, C.J. Velchev, Phys. Rev. C 91(6), 065801 (2015). https://doi.org/10.1103/PhysRevC.91.065801

    Article  ADS  Google Scholar 

  24. D. Blaschke, N. Chamel, Astrophys. Space Sci. Libr. 457, 337 (2018). https://doi.org/10.1007/978-3-319-97616-7_7

    Article  ADS  Google Scholar 

  25. R.C.R. de Lima, S.S. Avancini, C. Providência, Phys. Rev. C 88, 035804 (2013)

    Article  ADS  Google Scholar 

  26. S.S. Bao, J.N. Hu, H. Shen, Phys. Rev. C 103(1), 015804 (2021). https://doi.org/10.1103/PhysRevC.103.015804

    Article  ADS  Google Scholar 

  27. H. Pais, B. Bertolino, J. Fang, X. Wang, C. Providência, Eur. Phys. J. A 57, 193 (2021)

  28. I. Sengo, H. Pais, B. Franzon, C. Providência, Phys. Rev. D 102(6), 063013 (2020). https://doi.org/10.1103/PhysRevD.102.063013

    Article  ADS  MathSciNet  Google Scholar 

  29. D.G. Yakovlev, C.J. Pethick, Ann. Rev. Astron. Astrophys. 42, 169 (2004). https://doi.org/10.1146/annurev.astro.42.053102.134013

    Article  ADS  Google Scholar 

  30. D. Viganò, N. Rea, J.A. Pons, R. Perna, D.N. Aguilera, J.A. Miralles, Mon. Not. R. Astron. Soc. 434, 123 (2013). https://doi.org/10.1093/mnras/stt1008

    Article  ADS  Google Scholar 

  31. A.Y. Potekhin, D.G. Yakovlev, Astron. Astrophys. 374, 213 (2001). https://doi.org/10.1051/0004-6361:20010698

    Article  ADS  Google Scholar 

  32. J.A. Pons, J.A. Miralles, U. Geppert, Astron. Astrophys. 496(1), 207 (2009). https://doi.org/10.1051/0004-6361:200811229

    Article  ADS  Google Scholar 

  33. A.Y. Potekhin, G. Chabrier, Astron. Astrophys. 609, A74 (2018). https://doi.org/10.1051/0004-6361/201731866

    Article  ADS  Google Scholar 

  34. T. Akgün, P. Cerdá-Durán, J.A. Miralles, J.A. Pons, Mon. Not. R. Astron. Soc. 481(4), 5331 (2018). https://doi.org/10.1093/mnras/sty2669

    Article  ADS  Google Scholar 

  35. A.M. Beloborodov, X. Li, Astrophys. J. 833(2), 261 (2016). https://doi.org/10.3847/1538-4357/833/2/261

    Article  ADS  Google Scholar 

  36. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450(4–6), 97–213 (2007). https://doi.org/10.1016/j.physrep.2007.06.002

    Article  ADS  Google Scholar 

  37. S. Goriely, N. Chamel, H.T. Janka, J.M. Pearson, Astron. Astrophys. 531, A78 (2011). https://doi.org/10.1051/0004-6361/201116897

    Article  Google Scholar 

  38. T. Carreau, F. Gulminelli, N. Chamel, A.F. Fantina, J.M. Pearson, Astron. Astrophys. 635, A84 (2020). https://doi.org/10.1051/0004-6361/201937236

    Article  ADS  Google Scholar 

  39. A.Y. Potekhin, G. Chabrier, Phys. Rev. E 62, 8554 (2000). https://doi.org/10.1103/PhysRevE.62.8554

    Article  ADS  Google Scholar 

  40. C.J. Pethick, A.Y. Potekhin, Phys. Lett. B 427, 7 (1998). https://doi.org/10.1016/S0370-2693(98)00341-4

    Article  ADS  Google Scholar 

  41. G. Watanabe, K. Iida, K. Sato, Nucl. Phys. A 687, 512 (2001). https://doi.org/10.1016/S0375-9474(00)00585-6

    Article  ADS  Google Scholar 

  42. G. Watanabe, K. Iida, K. Sato, Nucl. Phys. A 726(3), 357 (2003)

    Article  ADS  Google Scholar 

  43. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86(25), 5647 (2001)

    Article  ADS  Google Scholar 

  44. C. Providencia, A. Rabhi, Phys. Rev. C 87(5), 055801 (2013). https://doi.org/10.1103/PhysRevC.87.055801

    Article  ADS  Google Scholar 

  45. H. Pais, C. Providência, Phys. Rev. C 94(1), 015808 (2016)

    Article  ADS  Google Scholar 

  46. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994). https://doi.org/10.1016/0375-9474(94)90923-7

    Article  ADS  Google Scholar 

  47. S.S. Bao, J.N. Hu, Z.W. Zhang, H. Shen, Phys. Rev. C 90(4), 045802 (2014). https://doi.org/10.1103/PhysRevC.90.045802

    Article  ADS  Google Scholar 

  48. M. Fortin, C. Providencia, A.R. Raduta, F. Gulminelli, J.L. Zdunik, P. Haensel, M. Bejger, Phys. Rev. C 94(3), 035804 (2016). https://doi.org/10.1103/PhysRevC.94.035804

    Article  ADS  Google Scholar 

  49. H. Shen, F. Ji, J. Hu, K. Sumiyoshi, Astrophys. J. 891, 148 (2020). https://doi.org/10.3847/1538-4357/ab72fd

    Article  ADS  Google Scholar 

  50. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013). https://doi.org/10.1088/0004-637X/773/1/11

    Article  ADS  Google Scholar 

  51. D. Adhikari et al., Phys. Rev. Lett. 126(17), 172502 (2021). https://doi.org/10.1103/PhysRevLett.126.172502

    Article  ADS  Google Scholar 

  52. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021)

  53. L. Brito, C. Providência, A.M. Santos, S.S. Avancini, D. Menezes, P. Chomaz, Phys. Rev. C 74, 045801 (2006)

    Article  ADS  Google Scholar 

  54. H. Pais, A. Santos, L. Brito, C. Providência, Phys. Rev. C 82, 025801 (2010)

    Article  ADS  Google Scholar 

  55. H. Müller, B.D. Serot, Phys. Rev. C 52, 2072 (1995)

    Article  ADS  Google Scholar 

  56. V. Baran, M. Colonna, M.D. Toro, A.B. Larionov, Nucl. Phys. A 632, 287 (1998)

    Article  ADS  Google Scholar 

  57. J. Margueron, P. Chomaz, Phys. Rev. C 67, 041602(R) (2003)

    Article  ADS  Google Scholar 

  58. J. Frieben, L. Rezzolla, Mon. Not. R. Astron. Soc. 427, 3406 (2012). https://doi.org/10.1111/j.1365-2966.2012.22027.x

    Article  ADS  Google Scholar 

  59. S.K. Lander, P. Haensel, B. Haskell, J.L. Zdunik, M. Fortin, Mon. Not. R. Astron. Soc. 503(1), 875 (2021). https://doi.org/10.1093/mnras/stab460

    Article  ADS  Google Scholar 

  60. K. Uryu, S. Yoshida, E. Gourgoulhon, C. Markakis, K. Fujisawa, A. Tsokaros, K. Taniguchi, Y. Eriguchi, Phys. Rev. D 100(12), 123019 (2019). https://doi.org/10.1103/PhysRevD.100.123019

    Article  ADS  Google Scholar 

  61. C. Ducoin, J. Margueron, C. Providência, I. Vidana, Phys. Rev. C 83, 045810 (2011)

    Article  ADS  Google Scholar 

  62. K. Uryu, E. Gourgoulhon, C. Markakis, K. Fujisawa, A. Tsokaros, Y. Eriguchi, Phys. Rev. D 90(10), 101501 (2014). https://doi.org/10.1103/PhysRevD.90.101501

    Article  ADS  Google Scholar 

  63. S.K. Lander, N. Andersson, D. Antonopoulou, A.L. Watts, Mon. Not. R. Astron. Soc. 449(2), 2047 (2015). https://doi.org/10.1093/mnras/stv432

    Article  ADS  Google Scholar 

  64. S.K. Lander, K.N. Gourgouliatos, Mon. Not. R. Astron. Soc. 486(3), 4130 (2019). https://doi.org/10.1093/mnras/stz1042

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by national funds from FCT (Fundação para a Ciência e a Tecnologia, I.P, Portugal) under the Projects No. UID/FIS/04564/2019, No. UID/04564/2020, and No. POCI-01-0145-FEDER-029912 with financial support from Science, Technology and Innovation, in its FEDER component, and by the FCT/MCTES budget through national funds (OE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Rabhi.

Additional information

Communicated by Carsten Urbach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M., Rabhi, A. & Providência, C. Crust-core transition of a neutron star: effect of the temperature under strong magnetic fields. Eur. Phys. J. A 57, 263 (2021). https://doi.org/10.1140/epja/s10050-021-00572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00572-y

Navigation