Skip to main content
Log in

The open LPC Paul trap for precision measurements in beta decay

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The LPCTrap experiment uses an open Paul trap which was built to enable precision measurements in the beta decay of radioactive ions. The initial goal was the precise measurement of the beta-neutrino angular correlation coefficient in the decay of 6He . Its geometry results from a careful optimization of the harmonic potential created by cylindrical electrodes. It supersedes previously considered geometries that presented a smaller detection solid angle to the beta particle and the recoiling ion. We describe here the methods which were used for the potential optimization, and we present the measured performances in terms of trapping time, cloud size and temperature, and space charge related limits. The properties of the ion cloud at equilibrium are investigated by a simple numerical simulation using hard sphere collisions, which additionally gives insights on the trapping loss mechanism. The interpretation for the observed trapping lifetimes is further corroborated by a model recently developed for ion clouds in Paul traps. The open trap shall serve other projects. It is currently used for commissioning purpose in the TRAPSENSOR experiment and is also considered in tests of the Standard Model involving the beta decay of polarized 23Mg and 39Ca ion in the frame of the MORA experiment. The latter tests require in-trap polarization of the ions and further optimization of the trapping and detection setup. Based on the results of the simulations and of their interpretation, different improvements of the trapping setup are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ban et al., Ann. Phys. (Berlin) 525, 576 (2013)

    Article  ADS  Google Scholar 

  2. M. Gonzalez-Alonso, O. Naviliat-Cuncic, N. Severijns, Prog. Part. Nucl. Phys. 104, 165 (2019)

    Article  ADS  Google Scholar 

  3. R.E. March, J.F.J. Todd, Quadrupole Ion Trap Mass Spectrometry, in Chemical Analysis, a series of monographs on analytical chemistry and its applications, edited by J.D. Winefordner (Wiley, 2005)

  4. R. Alheit, C. Henning, R. Morgenstern, F. Vedel, G. Werth, Appl. Phys. B 61, 277 (1995)

    Article  ADS  Google Scholar 

  5. P. Delahaye et al., Hyperfine Interact. 132, 475 (2001)

    Article  ADS  Google Scholar 

  6. P. Delahaye, PhD Thesis (University of Caen Basse-Normandie, 2002)

  7. P. Delahaye, A new Paul trap geometry for a measurement of $\beta$-$\nu$ angular correlation in ^6He decay, poster presented at the HCI Conference, Caen (2002)

  8. D. Manura, D. Dahl, SIMION (R) 8.0 User Manual (Scientific Instrument Services, Inc., Ringoes, NJ, 2008) http://simion.com/

  9. P.H. Dawson, Quadrupole Mass Spectrometry and its Applications (American Vacuum Society Classics, 1976)

  10. D. Rodriguez, A. Méry, G. Ban, J. Brégeault, G. Darius, D. Durand, X. Fléchard, M. Herbane, M. Labalme, E. Liénard et al., D. Nucl. Instrum. Methods Phys. Res. A 565, 876 (2006)

    Article  ADS  Google Scholar 

  11. X. Fléchard, Ph. Velten, E. Liénard et al., J. Phys. G: Nucl. Part. Phys. 38, 055101 (2011)

    Article  ADS  Google Scholar 

  12. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipies in C, second edition (Cambridge University Press, 1992)

  13. L.A. Viehland, E.A. Mason, At. Nucl. Data Tables 60, 37 (1995)

    Article  ADS  Google Scholar 

  14. X. Fabian, F. Mauger, G. Quéméner, Ph. Velten, G. Ban, C. Couratin, P. Delahaye, D. Durand, B. Fabre, P. Finlay et al., Hyperfine Interact. 235, 87 (2015)

    Article  ADS  Google Scholar 

  15. X. Fabian, PhD Thesis (University of Caen), HAL Id: tel-01288412

  16. P. Delahaye, Eur. Phys. J. A 55, 83 (2019) arXiv:1810.09121 [physics.plasm-ph]

    Article  ADS  Google Scholar 

  17. F.G. Major, H.G. Dehmelt, Phys. Rev. 170, 91 (1968)

    Article  ADS  Google Scholar 

  18. X. Fléchard, G. Ban, D. Durand, E. Liénard, F. Mauger, A. Méry, O. Naviliat-Cuncic, D. Rodriguez, P. Velten, Hyperfine Interact. 199, 21 (2011)

    Article  ADS  Google Scholar 

  19. R. Moszynski et al., J. Chem. Phys. 6, 4697 (1994)

    Article  ADS  Google Scholar 

  20. E. Liénard, G. Ban, C. Couratin, P. Delahaye, D. Durand et al., Hyperfine Interact. 236, 1 (2015)

    Article  ADS  Google Scholar 

  21. P. Delahaye, E. Liénard, I. Moore et al., Hyperfine Interact. 240, 63 (2019)

    Article  ADS  Google Scholar 

  22. G. Neyens et al., Phys. Rev. Lett. 94, 022501 (2005)

    Article  ADS  Google Scholar 

  23. M. Kowalska et al., Phys. Rev. C 77, 034307 (2008)

    Article  ADS  Google Scholar 

  24. M. Schwarz et al., Rev. Sci. Instrum. 83, 083115 (2012)

    Article  ADS  Google Scholar 

  25. S. Schwarz et al., Nucl. Instrum. Methods B 204, 474 (2003)

    Article  ADS  Google Scholar 

  26. J.M. Cornejo, P. Escobedo, D. Rodríguez, Hyperfine Interact. 227, 223 (2014)

    Article  ADS  Google Scholar 

  27. J.M. Cornejo et al., Rev. Sci. Instrum. 86, 103104 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Delahaye.

Additional information

Communicated by K. Blaum

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article. The results of the calculations shown here can be easily reproduced using similar numerical methods.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delahaye, P., Ban, G., Benali, M. et al. The open LPC Paul trap for precision measurements in beta decay. Eur. Phys. J. A 55, 101 (2019). https://doi.org/10.1140/epja/i2019-12777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12777-3

Navigation