Skip to main content
Log in

Precision calculation of γd↦πnn within chiral perturbation theory

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The reaction γd↦π+nn is calculated up to order χ5/2 in chiral perturbation theory, where χ denotes the ratio of the pion to the nucleon mass. Special emphasis is put on the role of nucleon recoil corrections that are the source of contributions with fractional power in χ. Using the known near-threshold production amplitude for γp↦π+n as the only input, the total cross-section for γd↦π+nn is described very well. A conservative estimate suggests that the theoretical uncertainty for the transition operator amounts to 3% for the computed amplitude near threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Physica, A 96, 327 (1979).

    Google Scholar 

  2. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

    Article  MathSciNet  Google Scholar 

  3. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001), arXiv:hep-ph/0103088.

    Article  ADS  Google Scholar 

  4. N. Fettes, U.-G. Meißner, Nucl. Phys. A 693, 693 (2001), arXiv:hep-ph/0101030.

    ADS  Google Scholar 

  5. G. Ecker, M. Mojzis, Phys. Lett. B 410, 266 (1997), arXiv:hep-ph/9705216.

    ADS  Google Scholar 

  6. S. Steininger, U.G. Meissner, N. Fettes, JHEP 9809, 008 (1998), arXiv:hep-ph/9808280.

    ADS  Google Scholar 

  7. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, At the Frontier of Particle Physics, Vol. 1 (World Scientivic, Singapore, 2001) pp. 133-269, arXiv:nucl-th/0008064.

  8. S. Weinberg, Phys. Lett. B 295, 114 (1992).

    ADS  Google Scholar 

  9. S.R. Beane, V. Bernard, T.-S.H. Lee, U.-G. Meißner, U. van Kolck, Nucl. Phys. A 618, 381 (1997), arXiv:hep-ph/9702226. %%CITATION = HEP-PH 9702226

    ADS  Google Scholar 

  10. H. Krebs, V. Bernard, U.-G. Meißner, Nucl. Phys. A 713, 405 (2003), arXiv:nucl-th/0207072

    ADS  Google Scholar 

  11. R.P. Hildebrandt, H.W. Griesshammer, T.R. Hemmert, D.R. Phillips, Nucl. Phys. A 748, 573 (2005), arXiv:nucl-th/0405077

    ADS  Google Scholar 

  12. E.C. Booth, Phys. Rev. C 20, 1217 (1979).

    ADS  Google Scholar 

  13. A. Gardestig, D.R. Phillips, arXiv:nucl-th/0501049.

  14. M.I. Levchuk, M. Schumacher, F. Wissmann, Nucl. Phys. A 675, 621 (2000), arXiv:nucl-th/0001057.

    ADS  Google Scholar 

  15. V. Baru, C. Hanhart, A.E. Kudryavtsev, U.-G. Meißner, Phys. Lett. B 589, 118 (2004), arXiv:nucl-th/0402027.

    ADS  Google Scholar 

  16. M. Benmerrouche, E. Tomusiak, Phys. Rev. C 58, 1777 (1998).

    Article  ADS  Google Scholar 

  17. H. Arenhövel, E.M. Darwish, A. Fix, M. Schwamb, Mod. Phys. Lett. A 18, 190 (2003), arXiv:nucl-th/0209083.

    ADS  Google Scholar 

  18. M.P. Rekalo, E. Tomasi-Gustafsson, Phys. Rev. C 66, 015203 (2002), arXiv:nucl-th/0112063.

    Article  ADS  Google Scholar 

  19. V.V. Baru, A.E. Kudryavtsev, V.E. Tarasov, Phys. At. Nucl. 67, 743 (2004), arXiv:nucl-th/0301021.

    Article  Google Scholar 

  20. F. Myhrer, Nucl. Phys. A 241, 524 (1975)

    ADS  Google Scholar 

  21. J.M. Laget, Phys. Rep. 69, 1 (1981).

    Article  ADS  Google Scholar 

  22. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987).

    Article  Google Scholar 

  23. M. Kroll, M. Ruderman, Phys. Rev. 93, 233 (1954).

    Article  ADS  MATH  Google Scholar 

  24. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).

    Google Scholar 

  25. V. Bernard, N. Kaiser, U.-G. Meißner, Nucl. Phys. B 383, 442 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  26. V. Bernard, N. Kaiser, J. Gasser, U.-G. Meißner, Phys. Lett. B 268, 291 (1991).

    ADS  Google Scholar 

  27. E. Korkmaz, Phys. Rev. Lett. 83, 3609 (1999).

    Article  ADS  Google Scholar 

  28. V. Bernard, N. Kaiser, U.-G. Meißner, Phys. Lett. B 383, 116 (1996), arXiv:hep-ph/9603278.

    ADS  MathSciNet  Google Scholar 

  29. H.W. Fearing, T.R. Hemmert, R. Lewis, C. Unkmeir, Phys. Rev. C 62, 054006 (2000), arXiv:hep-ph/0005213.

    ADS  Google Scholar 

  30. O. Hanstein, D. Drechsel, L. Tiator, Nucl. Phys. A 632, 561 (1998)

    ADS  Google Scholar 

  31. C. Hanhart, U. van Kolck, G. Miller, Phys. Rev. Lett. 85, 2905 (2000), arXiv:nucl-th/0004033

    Article  ADS  Google Scholar 

  32. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998), arXiv:nucl-th/9802075.

    Article  ADS  Google Scholar 

  33. U.-G. Meißner, U. Raha, A. Rusetsky, Eur. Phys. J. C 41, 213 (2005) arXiv:nucl-th/0501073.

    ADS  Google Scholar 

  34. S.R. Beane, V. Bernard, E. Epelbaum, U.-G. Meißner, D.R. Phillips, Nucl. Phys. A 720, 399 (2003), arXiv:hep-ph/0206219.

    ADS  Google Scholar 

  35. R. Machleidt, Phys. Rev. C 63, 024001 (2001), arXiv:nucl-th/0407003.

    ADS  Google Scholar 

  36. H. Zankel, W. Plessas, J. Haidenbauer, Phys. Rev. C 28, 538 (1983).

    Article  ADS  Google Scholar 

  37. J. Haidenbauer, W. Plessas, Phys. Rev. C 30, 1822 (1984).

    Article  ADS  Google Scholar 

  38. C.R. Howell, Phys. Lett. B 444, 252 (1998).

    ADS  Google Scholar 

  39. D.E. González Trotter, Phys. Rev. Lett. 83, 3788 (1999).

    ADS  Google Scholar 

  40. V. Huhn, L. Watzold, C. Weber, A. Siepe, W. von Witsch, H. Witala, W. Gloeckle, Phys. Rev. C 63, 014003 (2001).

    Article  ADS  Google Scholar 

  41. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005), arXiv:nucl-th/0405048.

    ADS  Google Scholar 

  42. N. de Botton, C. Tzara, Saclay Internal Report DPhN/HE 78/06.

  43. V.B. Berestetsky, E.B. Lifshitz, L.P. Pitaevsky, Quantum Electrodynamics, Course of Theoretical Physics 4 (Pergamon, Oxford, UK, 1982).

  44. V.E. Tarasov, V.V. Baru, A.E. Kudryavtsev, Phys. At. Nucl. 63, 801 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hanhart.

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lensky, V., Baru, V., Haidenbauer, J. et al. Precision calculation of γd↦πnn within chiral perturbation theory. Eur. Phys. J. A 26, 107–123 (2005). https://doi.org/10.1140/epja/i2005-10154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10154-7

PACS.

Navigation