Skip to main content
Log in

Theory of collective excitations in simple liquids

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present a parameter-free theory of the collective excitations in simple liquids such as liquid metals or rare gases. The theory is based on the mode-coupling theory (MCT), which has been previously applied successfully for explaining the liquid-to glass transition. The only input is the liquid structure factor. We achieve good agreement both for the liquid dispersion (maximum of the longitudinal current spectrum) and width (damping) with experimental findings. The time-dependent memory function predicted by MCT has a two-step exponential decay as previously found in computer simulations. Furthermore MCT predicts a scaling of the liquid dispersion with the effective hard-sphere diameter of the materials. This scaling is obeyed by the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman, T. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Cambridge, 1952)

  2. J.R.D. Copley, S. Lovesey, Rep. Prog. Phys. 38, 461 (1975)

    Article  ADS  Google Scholar 

  3. J.P. Boon, S. Yip, Molecular Hydrodynamics (McGraw Hill, New York, 1980)

  4. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, Amsterdam, 1986)

  5. P.A. Egelstaff, An Introduction to the Liquid State (Clarendon Press, Oxford, 1994)

  6. T. Scopigno, G. Ruocco, F. Sette, Rev. Mod. Phys. 77, 881 (2005)

    Article  ADS  Google Scholar 

  7. D. Forster, Hydrodynmics, Broken Symmetry and Correlation Func (Benjamin, Reading, Mass, 1975)

  8. P. Protopapas, H.C. Anderson, N.A.D. Parl, J. Chem. Phys. 49, 15 (1973)

    Article  ADS  Google Scholar 

  9. W. Götze, M. Lücke, Phys. Rev. A 13, 3822 (1976)

    Google Scholar 

  10. W. Götze, M. Lücke, Phys. Rev. A 13, 3825 (1976)

    Google Scholar 

  11. W. Götze, M. Lücke, Phys. Rev. A 11, 2173 (1976)

    Article  Google Scholar 

  12. J.B.W. Götze, M. Lücke, Phys. Rev. A 17, 434 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Bosse, W. Götze, M. Lücke, Phys. Rev. A 17, 447 (1978)

    Article  ADS  Google Scholar 

  14. J. Bosse, W. Götze, M. Lücke, Phys. Rev. A 18, 1176 (1978)

    Article  ADS  Google Scholar 

  15. U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C 17, 5915 (1984)

    Article  ADS  Google Scholar 

  16. E. Leutheusser, Phys. Rev. A 29, 2765 (1984)

    Article  ADS  Google Scholar 

  17. W. PGötze, in Liquids, Freezing and the Glass transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1991)

  18. W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford University Press, Oxford, 2010)

  19. W. Götze, L. Sjögren, Rep. Progr. Phys. 55, 241 (1992)

    Article  Google Scholar 

  20. W. Schirmacher, H. Sinn, Cond. Matter Phys. 11, 127 (2008)

    Google Scholar 

  21. M.S. Wertheim, Phys. Rev. Lett. 1, 321 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Thiele, J. Chem. Phys. 39, 474 (1963)

    Article  ADS  Google Scholar 

  23. L.V.D. Levesque, J. Kurkijärvi, Phys. Rev. A 7, 1690 (1973)

    Article  ADS  Google Scholar 

  24. T. Scopigno, U. Balucani, G. Ruocco, F.S., Phys. Rev. Lett. 85, 4076 (2000)

    Article  ADS  Google Scholar 

  25. T. Scopigno, U. Balucani, G. Ruocco, F.S., Phys. Rev. E 64, 011210 (2001)

    ADS  Google Scholar 

  26. T. Scopigno, G. Ruocco, F. Sette, G. Vili, Phys. Rev. E 66, 031205 (2002)

    Article  ADS  Google Scholar 

  27. T. Scopigno, L.C.R. Di Leonardo, A.Q.R. Baron, D. Fioretto, G. Ruocco, Phys. Rev. Lett. 94, 155301 (2005)

    Article  ADS  Google Scholar 

  28. A.H. Said, H. Sinn, A. Alatas, C.A. Burns, D.L. Price, M.L. Saboungi, W. Schirmacher, Phys. Rev. B 74, 172202 (2006)

    Article  ADS  Google Scholar 

  29. H. Reichert, F. Bencivenga, B. Wehinger, M. Krisch, F. Sette, H. Dosch, Phys. Rev. Lett. 98, 096104 (2007)

    Article  ADS  Google Scholar 

  30. L. Verlet, Phys. Rev. 165, 201 (1968)

    Article  ADS  Google Scholar 

  31. A. Rahman, Neutron Inelastic Scattering (Int. Atomic Energy Agency, Vienna, 1968)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirmacher, W., Schmid, B. & Sinn, H. Theory of collective excitations in simple liquids. Eur. Phys. J. Spec. Top. 196, 3–13 (2011). https://doi.org/10.1140/epjst/e2011-01413-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01413-4

Keywords

Navigation