Skip to main content
Log in

Vibration Analysis of Piezoelectric Carbon Nanotube Considering Surface Effects, Located in the Magnetic Field and Resting on Nonlinear Viscoelastic Foundation

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

In this study, the free and forced vibrations of piezoelectric carbon nanotubes with the effect of surface effects placed in a magnetic field situated on a viscoelastic foundation with nonlinear damping and stiffness elements under the influence of external harmonic force are investigated. The nonlocal theory is used to illustrate the effects of the nanoscale in the theoretical model and the equations of motion of the system are extracted using the dynamic equilibrium conditions of the element. To reduce the order of the obtained dynamical equations, Galerkin method is used. Considering the boundary conditions of the problem, which are both simple support (SS) or clamped (CC), the nonlinear time differential equations of the system and its coefficients are obtained. After that, using the multiple time scales method, an analytical closed-form solution aimed at amplitude-frequency response curves for forced vibration of a nonlinear system is extracted. Moreover, the effect of CNT surface effect, voltage applied to the system, and nonlinear viscoelastic foundation stiffness on the results of frequencies and dynamic response curves will be discovered. It can be resulted that the highest frequency is related to the form that considers all surface effects and the lowest frequency is related to the form that does not consider any of the surface effects. Also, existence of the non-local parameter reduces the maximum range of fluctuations. Finally, the obtained results are validated with the expected ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Chaurasia, Int. J. Sci. Res. 6, 1560–1562 (2017).

    Google Scholar 

  2. Md. Fakruddin, Z. Hossain, and H. Afroz, J. Nanobiotechnol. 10, 1–8 (2012).

  3. M. Allsopp, A. Walters, and D. Santillo, Nanotechnologies and Nanomaterials in Electrical and Electronic Goods: A Review of Uses and Health Concerns (Greenpeace Res. Labor., London, 2007).

    Google Scholar 

  4. A. G. Mamalis, J. Mater. Proc. Technol. 181, 52–58 (2007).

    Article  CAS  Google Scholar 

  5. T. Yadav, J. Freim, and Y. Avniel, “Nanotechnology for electronic and opto-electronic devices,” US Patent No. 6576355 (2003).

  6. W. A. Badawy, J. Adv. Res. 6, 123–132 (2015).

    Article  CAS  Google Scholar 

  7. M. R. Khan and F. R. Tanveer, Plant. Pathol. J. 13, 214–231 (2014).

    Article  CAS  Google Scholar 

  8. P. Boisseau and B. Loubaton, C. R. Phys. 12, 620–636 (2011).

    Article  CAS  Google Scholar 

  9. A. S. Malani, A. D. Chaudhari, and R. U. Sambhe, J. Mech. Aerospace, Ind., Mechatron. Manuf. Eng. 10 (1) 36–40 (2016).

  10. X. T. Zheng and Ch. Ming Li, Chem. Soc. Rev. 41, 2061–2071 (2012).

    Article  CAS  Google Scholar 

  11. M. Kalweit, “Molecular modelling of meso-and nano-scale dynamics,” Dissertation (Cranfield University, 2008).

  12. L. Zhang and Sh. Jiang, J. Chem. Phys. 117, 1804–1811 (2002).

    Article  CAS  Google Scholar 

  13. R. Kosloff, J. Phys. Chem. 92, 2087–2100 (1988).

    Article  CAS  Google Scholar 

  14. D. M. Sullivan and D. S. Citrin, J. Appl. Phys. 97, 104305 (2005).

    Article  Google Scholar 

  15. R. McCarthy, “System, method, and product for nanoscale modeling, analysis, simulation, and synthesis (NMASS),” US Patent Application No. 10/248,092, 2003.

  16. M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, “Modeling of nanoscale devices,” Proc. IEEE 96, 1511–1550 (2008).

    Article  Google Scholar 

  17. M. Janghorban and A. Zare, Phys. E (Amsterdam, Neth.) 43, 1602–1604 (2011).

  18. A. Manbachi and R. S. C. Cobbold, “Development and application of piezoelectric materials for ultrasound generation and detection,” Ultrasound 19, 187–196 (2011).

    Article  Google Scholar 

  19. Y. Zhi and L. Jiang, J. Phys. D: Appl. Phys. 44, 075404 (2011).

    Article  Google Scholar 

  20. Y. Zhi and L. Jiang, J. Phys. D: Appl. Phys. 45, 255401 (2012).

    Article  Google Scholar 

  21. Zh. Zhang and L. Jiang, J. Appl. Phys. 116, 134308 (2014).

    Article  Google Scholar 

  22. P. Karaoglu and M. Aydogdu, J. Mech. Eng. Sci. 224, 497–503 (2010).

    Article  Google Scholar 

  23. W. S. Rehm, Am. J. Physiol.-Legacy Content 144, 115–125 (1945).

    Article  CAS  Google Scholar 

  24. M. V. Il’ina et al., Materials 11, 638 (2018).

    Article  Google Scholar 

  25. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, J. Electromagn. Waves Appl. 20, 827–839 (2006).

    Article  Google Scholar 

  26. M. H. Kargarnovin et al., Comput. Struct. 83, 1865–1877 (2005).

    Article  Google Scholar 

  27. D. Qian, G. J. Wagner, and W. K. Liu, Comput. Methods Appl. Mech. Eng. 193, 1603–1632 (2004).

    Article  Google Scholar 

  28. B. Cockburn and Ch.-W. Shu, SIAM J. Numer. Anal. 35, 2440–2463 (1998).

    Article  Google Scholar 

  29. K. Takahashi et al., Bioinformatics 20, 538–546 (2004).

    Article  CAS  Google Scholar 

  30. Z. Yan and L. Y. Jiang, Nanotechnology 22, 245703 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shahsavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavari, S., Allafchian, A., Torkaman, P. et al. Vibration Analysis of Piezoelectric Carbon Nanotube Considering Surface Effects, Located in the Magnetic Field and Resting on Nonlinear Viscoelastic Foundation. Nanotechnol Russia 17, 64–73 (2022). https://doi.org/10.1134/S2635167622010141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622010141

Navigation