Skip to main content
Log in

Memristive Effect in Nitrogen-Doped Carbon Nanotubes

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The development of nonvolatile memory is one of the urgent problems of contemporary science due to the rapid evolution of portable electronics. A promising trend in this field is the development of memristor structures able to change their resistance depending on the charge current through a memristor. The memristive effect in nitrogen-doped carbon nanotubes (CNT) is studied. It is established that the ratio between the resistances in high- and low-resistance states grows with an increase in the defectiveness of the carbon nanotubes to attain 4 × 105. It is shown that multilevel switching of the resistance determined by the recording voltage or deformation of a nanotube is possible in carbon nanotubes. The obtained results can be used for developing nonvolatile memory on the basis of CNTs corresponding to the condition of high scalability and multilevel switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Meena, S. Sze, U. Chand, et al., Nanoscale Res. Lett. 9, 526 (2014). https://doi.org/10.1186/1556-276X-9-526

    Article  Google Scholar 

  2. K. Sun, J. Chen, and X. Yan, Adv. Funct. Mater. 2020, 2006773 (2020). https://doi.org/10.1002/adfm.202006773

    Article  CAS  Google Scholar 

  3. D. S. Jeong and C. S. Hwang, Adv. Mater. 30, 1704729 (2018). https://doi.org/10.1002/adma.201704729

    Article  CAS  Google Scholar 

  4. L. Wang, C. H. Yang, J. Wen, et al., J. Mater. Sci. Mater. Electron. 26, 4618 (2015). https://doi.org/10.1007/s10854-015-2848-z

    Article  CAS  Google Scholar 

  5. W. Huh, D. Lee, and C. H. Lee, Adv. Mater. 2020, 2002092 (2020). https://doi.org/10.1002/adma.202002092

    Article  CAS  Google Scholar 

  6. F. Pan, S. Gao, C. Chen, et al., Mater. Sci. Eng. R 83, 1 (2014). https://doi.org/10.1016/j.mser.2014.06.002

    Article  Google Scholar 

  7. H. Wang, L. Hu, and W. Han, J. Alloys Compd. 854, 157200 (2021). https://doi.org/10.1016/j.jallcom.2020.157200

    Article  CAS  Google Scholar 

  8. S. Lee, J.-B. Park, M.-J. Lee, et al., AIP Adv. 6, 125010 (2016). https://doi.org/10.1063/1.4971820

    Article  CAS  Google Scholar 

  9. R. Singh, M. Kumar, S. Iqbal, et al., Appl. Surf. Sci. 536, 147738 (2021). https://doi.org/10.1016/j.apsusc.2020.147738

    Article  CAS  Google Scholar 

  10. R. V. Tominov, Z. E. Vakulov, and V. I. Avilov, Nanomaterials 10, 1007 (2020). https://doi.org/10.3390/nano10051007

    Article  CAS  Google Scholar 

  11. T. A. Bachmann, W. W. Koelmans, V. P. Jonnalagadda, et al., Nanotechnology 29, 035201 (2018). https://doi.org/10.1088/1361-6528/aa9a18

    Article  CAS  Google Scholar 

  12. P. Viswanath, K. K. H. de Silva, H. H. Huang, et al., Appl. Surf. Sci. 532, 147188 (2020). https://doi.org/10.1016/j.apsusc.2020.147188

    Article  CAS  Google Scholar 

  13. M. Brzhezinskaya, O. O. Kapitanova, O. V. Kononenko, et al., J. Alloys Compd. 849, 156699 (2020). https://doi.org/10.1016/j.jallcom.2020.156699

    Article  CAS  Google Scholar 

  14. T. J. Raeber, Z. C. Zhao, B. J. Murdoch, et al., Carbon 136, 280 (2018). https://doi.org/10.1016/j.carbon.2018.04.045

    Article  CAS  Google Scholar 

  15. M. V. Il’ina, O. I. Il’in, Y. F. Blinov, et al., Carbon 123, 514 (2017). https://doi.org/10.1016/j.carbon.2017.07.090

    Article  CAS  Google Scholar 

  16. M. V. Il’ina, O. I. Il’in, A. V. Guryanov, et al., Fullerenes Nanotubes Carbon Nanostruct. 28, 78 (2020). https://doi.org/10.1080/1536383X.2019.1671370

    Article  Google Scholar 

  17. M. V. Il’ina, O. I. Il’in, Yu. F. Blinov, V. A. Smirnov, and O. A. Ageev, Tech. Phys. 63, 1672 (2018).

    Article  Google Scholar 

  18. Nanotechnologies in Microelectronics, Ed. by O. A. Ageev and B. G. Konoplev (Nauka, Moscow, 2019) [in Russian].

    Google Scholar 

  19. O. I. Il’in, M. V. Il’ina, N. N. Rudyk, et al., “Vertically aligned carbon nanotubes production by PECVD,” in Perspective of Carbon Nanotubes (InTech Open, Rijeka, 2019), p. 13. https://doi.org/10.5772/intechopen.84732

  20. O. I. Il’in, M. V. Il’ina, N. N. Rudyk, et al., Nanosyst. Phys. Chem. Math. 9, 92 (2018). https://doi.org/10.17586/2220-8054-2018-9-1-92-94

    Article  CAS  Google Scholar 

  21. O. Il’in, N. Rudyk, A. Fedotov, et al., Nanomaterials 10, 554 (2020). https://doi.org/10.3390/nano10030554

    Article  CAS  Google Scholar 

  22. S. V. Bulyarskiy, D. A. Bogdanova, G. G. Gusarov, et al., Diamond Relat. Mater. 109, 108042 (2020). https://doi.org/10.1016/j.diamond.2020.108042

    Article  CAS  Google Scholar 

  23. T. Sharifi, F. Nitze, and H. R. Barzegar, Carbon 50, 3535 (2012). https://doi.org/10.1016/j.carbon.2012.03.022

    Article  CAS  Google Scholar 

  24. S. U. Lee, H. Mizuseki, and Y. Kawazoe, Nanoscale 2, 2758 (2010). https://doi.org/10.1039/c0nr00411a

    Article  CAS  Google Scholar 

  25. S. H. Lim, H. I. Elim, and X. Y. Gao, Phys. Rev. B 73, 045402 (2006). https://doi.org/10.1103/PhysRevB.73.045402

    Article  CAS  Google Scholar 

  26. M. V. Il’ina, O. I. Il’in, V. A. Smirnov, et al., “Scanning probe techniques for characterization of vertically aligned carbon nanotubes,” in Atomic-Force Microscopy and Its Application (IntechOpen, Rijeka, 2019), Chap. 13. https://doi.org/10.5772/intechopen.78061

  27. A. M. Rao, D. Jacques, R. C. Haddon, et al., Appl. Phys. Lett. 76, 3813 (2000). https://doi.org/10.1063/1.126790

    Article  CAS  Google Scholar 

  28. M. V. Il’ina, O. I. Il’in, A. V. Guryanov, et al., J. Mater. Chem. C 9, 6014 (2021). https://doi.org/10.1039/D1TC00356A

    Article  Google Scholar 

  29. N. N. Rudyk, O. I. Il’in, M. V. Il’ina, et al., Tech. Phys. 66 (10) (2021, in press).

  30. S. I. Kundalwal, S. A. Meguid, and G. J. Weng, Carbon 117, 462 (2017). .https://doi.org/10.1016/j.carbon.2017.03.013

    Article  CAS  Google Scholar 

  31. M. Il’ina, O. Il’in, Y. Blinov, et al., Materials 11, 638 (2018). https://doi.org/10.3390/ma11040638

    Article  CAS  Google Scholar 

  32. M. V. Il’ina, Yu. F. Blinov, O. I. Il’in, A. V. Guryanov, and O. A. Ageev, Bull. Russ. Acad. Sci.: Phys. 81, 1485 (2017).https://doi.org/10.3103/S1062873817120140

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the ministry of Science and Higher Education of the Russian Federation within state task no. 0852-2020-0015 in the field of scientific activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Il’ina.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ina, M.V., Il’in, O.I., Osotova, O.I. et al. Memristive Effect in Nitrogen-Doped Carbon Nanotubes. Nanotechnol Russia 16, 821–828 (2021). https://doi.org/10.1134/S2635167621060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621060082

Navigation