Skip to main content
Log in

Heterolayer Memristive Systems for Multibit Memory: The Role of a Reservoir of Oxygen Vacancies

  • NANOELECTRONICS AND NEUROMORPHIC COMPUTER SYSTEMS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Heterolayer memristive systems with a functional aluminum oxide layer obtained by the method of atomic layer deposition are studied. A method is proposed for the arrangement of a reservoir of oxygen vacancies, which ensures the creation of a wide memory window. The proposed method uses oxygen permeable platinum electrodes in combination with an amorphous-silicon-dioxide adsorption sublayer formed by plasma-chemical deposition under the bottom electrode of the structure. It is shown that an amorphous-silicon-dioxide sublayer can play, under certain conditions, the role of a reservoir of oxygen vacancies for the functional sublayer, which provides a reversible change in the concentration of molecular oxygen in the regions adjacent to the electrodes and reversible readjustment of the resistivity of the structure within the range of seven orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. V. Benjamin, P. Gao, E. McQuinn, et al., Proc. IEEE 102, 699 (2014).

    Article  Google Scholar 

  2. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., Science (Washington, DC, U. S.) 345 (6197), 668 (2014).

    Article  CAS  Google Scholar 

  3. S. Mori, N. Qiao, F. Stefanin, et al., IEEE Trans. Biomed. Circuits Syst. 12, 106 (2018).

    Article  Google Scholar 

  4. E. Painkras, L. A. Plana, and J. Garside, IEEE J. Solid-State Circuits 48, 1943 (2013).

    Article  Google Scholar 

  5. M. Davies, N. Srinivasa, and T.-H. Lin, IEEE Micro 38, 82 (2018).

    Article  Google Scholar 

  6. A. Neckar, T. C. Stewart, B. V. Benjamin, et al., in Proceedings of the IEEE International Symposium on Circuits and System ISCAS (2018), p. 1.

  7. A. Ankit, I. El Hajj, S. R. Chalamalasetti, et al., in Proceedings of the ASPLOS’19 24th International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, p. 715.

  8. P. Yao, H. Wu, B. Gao, et al., Nature (London, U.K.) 577, 641 (2020).

    Article  CAS  Google Scholar 

  9. Y. Shi, L. Nguyen, S. Oh, et al., Nat. Commun. 9, 5312 (2018).

    Article  CAS  Google Scholar 

  10. Q. Liu, B. Gao, P. Yao, et al., “33.2 A fully integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing,” in Proceedings of the 2020 IEEE International Solid-State Circuits Conference ISSCC, 2020, p. 500.

  11. S. Stathopoulos, A. Khiat, M. Trapatseli, et al., Sci. Rep. 7, 17532 (2017). https://doi.org/10.1038/s41598-017-17785-1

    Article  CAS  Google Scholar 

  12. “Memristor device,” US Patent No. 10186660B2 (2019).

  13. N. Andreeva, A. Ivanov, and A. Petrov, AIP Adv. 8, 025208 (2018).

    Article  Google Scholar 

  14. L. Alekseeva, T. Nabatame, T. Chikyow, et al., Jpn. J. Appl. Phys. 55, 08PB02 (2016).

    Article  Google Scholar 

  15. A. Petrov, L. Alekseeva, A. Ivanov, et al., Nanoindustriya, No. 1, 63 (2016).

    Google Scholar 

  16. N. V. Andreeva, V. V. Luchinin, and E. A. Ryndin, “Memristive synapse,” RF Patent No. 202461 (2021).

  17. N. V. Andreeva, P. A. Turalchuk, D. A. Chigirev, et al., Chaos, Solitons Fractals 142, 110503 (2021). https://doi.org/10.1016/j.chaos.2020.110503

    Article  Google Scholar 

  18. D. Nečas and P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012). http://gwyddion.net/.

    Google Scholar 

  19. D. N. Goldstein and J. A. McCormick, J. Phys. Chem. 112, 19530 (2008).

    Article  CAS  Google Scholar 

  20. G. D. Chukin, The Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Reaction Mechanisms (Paladin, Moscow, 2010) [in Russian].

    Google Scholar 

  21. M. Lübben, S. Wiefels, R. Waser, and I. Valov, Adv. Electron. Mater., 1700458 (2017). https://doi.org/10.1002/aelm.201700458

  22. M. Y. Yang, K. Kamiya, B. Magyari-Kope, et al., Appl. Phys. Lett. 103, 093504 (2013).

    Article  Google Scholar 

  23. D. Liu, S. J. Clark, and J. Robertson, Appl. Phys. Lett. 96, 032905 (2010). https://doi.org/10.1063/1.3293440

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within State assignment FSEE-2020-0013 in the field of research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Andreeva.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, N.V., Romanov, A.A., Mazing, D.S. et al. Heterolayer Memristive Systems for Multibit Memory: The Role of a Reservoir of Oxygen Vacancies. Nanotechnol Russia 16, 790–797 (2021). https://doi.org/10.1134/S2635167621060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621060033

Navigation