Skip to main content
Log in

The Utilization of Highly Mineralized Liquid Waste from a Chemical Desalination Water Treatment Plant of a TPP with the Generation of Electrical Energy by Reverse Electrodialysis

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Reverse electrodialysis (RED) technology is one of the promising directions of alternative energy based on electrochemical transformations. In this study, an industrial experiment on the utilization of highly mineralized alkaline liquid waste from a chemical desalination water treatment plant by RED technology is performed on an experimental pilot electromembrane unit at an operating TPP. The RED process with ion-selective cation- and anion-exchange membranes proceeds in the diffusion dialysis mode under the action of the concentration gradient of ionic current carriers. As a result, the specific power of the unit per unit area of the membrane pair of 0.36 W/m2 is recorded. The rate of diffusion dialysis transport of the electrolyte substance is 0.3–0.6 kg/h on average per an apparatus. The efficiency of the RED process with respect to the energy generation is 47%, the theoretical electromotive force is 0.12 V per chamber, and the potential energy storage (specific generated energy) is 1.8 kWh/m3 of highly mineralized liquid waste at f = 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. V. Korovin, Fuel Cells and Electrochemical Power Plants (Izdatel’stvo MEI, Moscow, 2005) [in Russian].

    Google Scholar 

  2. G. L. Wick, Energy 3, 95 (1978).

    Article  CAS  Google Scholar 

  3. J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, Environ. Sci. Technol. 42, 5785 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. M. Ye, M. Pasta, X. Xie, Y. Cui, and C. S. Criddle, Energy Environ. Sci. 7, 2295 (2014).

    Article  CAS  Google Scholar 

  5. D. Brogioli, R. Ziano, R. A. Rica, D. Salerno, O. P. Kozynchenko, and H. V. Hamelers, Energy Environ. Sci. 5, 9870 (2012).

    Article  CAS  Google Scholar 

  6. Y. Mei and C. Y. Tang, Desalination 425, 156 (2018).

    Article  CAS  Google Scholar 

  7. J. W. Post, C. H. Goeting, J. Valk, and S. Goinga, J. Veerman, and H. V. M. Hamelers, Desalin. Water Treat. 16, 182 (2012).

    Article  CAS  Google Scholar 

  8. M. Turek and B. Bandura, Desalination 205, 67 (2007).

    Article  CAS  Google Scholar 

  9. P. Dlugole, C. Ag, K. Nijmeijer, and M. Wessling, Environ. Sci. Technol. 43, 6888 (2009).

    Article  CAS  Google Scholar 

  10. M. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini, and G. Micale, J. Membr. Sci. 500, 33 (2016).

    Article  CAS  Google Scholar 

  11. M. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, J. Membr. Sci. 522, 226 (2017).

    Article  CAS  Google Scholar 

  12. J. Y. Nam, K. S. Hwang, H. C. Kim, H. Jeong, H. Kim, and E. Jwa, Water Res. 148, 261 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. E. G. Novitsky, E. A. Grushevenko, V. P. Vasilevsky, and A. V. Volkov, Membr. Membr. Technol. 2, 109 (2020).

    Article  CAS  Google Scholar 

  14. A. V. Semenyuk, V. V. Knyazhev, and S. A. Garmash, Nauch. Probl. Transp. Sib. Dal’nego Vost. 2, 340 (2010).

    Google Scholar 

  15. R. A. Tufa, S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova, and G. di Profio, Appl. Energy 225, 290 (2018).

    Article  CAS  Google Scholar 

  16. D. A. Vermaas, J. Veerman, N. Y. Yip, M. Elimelech, M. Saakes, and K. Nijmeijer, ACS Sustainable Chem. Eng. 1, 1295 (2013).

    Article  CAS  Google Scholar 

  17. H. Tian, Y. Wang, Y. Pei, and J. C. Crittenden, Appl. Energy 262, 114482 (2020).

    Article  CAS  Google Scholar 

  18. A. M. Benneker, T. Rijnaarts, R. G. H. Lammertink, and J. A. Wood, J. Membr. Sci. 548, 421 (2018).

    Article  CAS  Google Scholar 

  19. E. Yu. Safronova, D. V. Golubenko, N. V. Shevlyakova, M. G. D’yakova, V. A. Tverskoi, L. Dammak, D. Grande, and A. B. Yaroslavtsev, J. Membr. Sci. 515, 196 (2016).

    Article  CAS  Google Scholar 

  20. D. V. Golubenko, B. V. Bruggen, and A. B. Yaroslavtsev, J. Appl. Polym. Sci. 137, 48656 (2020).

    Article  CAS  Google Scholar 

  21. D. V. Golubenko, G. Pourcelly, and A. B. Yaroslavtsev, Sep. Purif. Technol. 207, 329 (2018).

    Article  CAS  Google Scholar 

  22. E. Güler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, J. Membr. Sci. 446, 266 (2013).

    Article  CAS  Google Scholar 

  23. D. A. Vermaas, M. Saakes, and K. Nijmeijer, J. Membr. Sci. 385–386, 234 (2011).

    Article  CAS  Google Scholar 

  24. D. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, and K. Nijmeijer, Environ. Sci. Technol. 48, 3065 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. G. Z. Ramon, B. J. Feinberg, and E. M. V. Hoek, Energy Environ. Sci. 4, 4423 (2011).

    Article  CAS  Google Scholar 

  26. E. Fontananova, W. Zhang, I. Nicotera, C. Simari, W. van Baak, and G. Di Profio, J. Membr. Sci. 459, 177 (2014).

    Article  CAS  Google Scholar 

  27. L. J. J. Janssen, J. Appl. Electrochem. 37, 1383 (2007).

    Article  CAS  Google Scholar 

  28. R. A. Tufa, E. Rugiero, D. Chanda, J. Hnat, W. van Baak, and J. Veerman, J. Membr. Sci. 514, 155 (2016).

    Article  CAS  Google Scholar 

  29. R. A. Tufa, J. Hnát, M. Němeček, R. Kodým, E. Curcio, and K. Bouzek, J. Cleaner Prod. 203, 418 (2018).

    Article  CAS  Google Scholar 

  30. M. C. Hatzell, X. Zhu, and B. E. Logan, ACS Sustainable Chem. Eng. 2, 2211 (2014).

    Article  CAS  Google Scholar 

  31. X. Chen, C. Jiang, Y. Zhang, Y. Wang, and T. Xu, J. Membr. Sci. 544, 397 (2017).

    Article  CAS  Google Scholar 

  32. X. Chen, C. Jiang, M. A. Shehzad, Y. Wang, H. Feng, and Z. Yang, ACS Sustainable Chem. Eng. 7, 130230 (2019).

    Google Scholar 

  33. J. H. Han, H. Kim, K. S. Hwang, N. Jeong, and C. S. Kim, J. Electrochem. Sci. Technol. 10, 302 (2019).

    CAS  Google Scholar 

  34. X. Zhu, T. Kim, M. Rahimi, C. A. Gorski, and B. E. Logan, ChemSusChem 10, 797 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. R. S. Kingsbury, K. Chu, and O. Coronell, J. Membr. Sci. 495, 502 (2015).

    Article  CAS  Google Scholar 

  36. W. J. van Egmond, M. Saakes, S. Porada, T. Meuwissen, C. J. N. Buisman, and H. V. M. Hamelers, J. Power Sources 325, 129 (2016).

    Article  CAS  Google Scholar 

  37. O. Scialdone, A. D’Angelo, E. De Lume, and A. Galia, “Cathodic Reduction of Hexavalent Chromium Coupled with Electricity Generation Achieved by Reverse-Electrodialysis Processes Using Salinity Gradients,” Electrochim. Acta 137, 258 (2014).

    Article  CAS  Google Scholar 

  38. O. Scialdone, A. D’Angelo, and A. Galia, J. Electroanal. Chem. 738, 61 (2015).

    Article  CAS  Google Scholar 

  39. Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, and J. Qu, Electrochim. Acta 269, 128 (2018).

    Article  CAS  Google Scholar 

  40. S. Lee, et al., Ain Shams Eng. J. 12, 159 (2021).

    CAS  Google Scholar 

  41. D. M. Kader and N. V. Alekseeva, Yuzhno-Sib. Nauch. Vest. 2, 161 (2019).

    Google Scholar 

  42. D. A. Vermaas, E. Guler, M. Saakes, and K. Nijmeijer, Energy Proc. 20, 170 (2012).

    Article  CAS  Google Scholar 

  43. D. A. Vermaas, M. Saakes, and K. Nijmeijer, Environ. Sci. Technol. 45, 7089 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. H. I. Jeong, H. J. Kim, and D. K. Kim, Energy 68, 229 (2014).

    Article  Google Scholar 

  45. N. Y. Yip, D. A. Vermaas, K. Nijmeijer, and M. Elimelech, Environ. Sci. Technol. 48, 4925 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. A. A. Filimonova, E. K. Arakelyan, A. A. Chichirov, N. D. Chichirova, and A. I. Minibaev, Nov. Elektroenerg. 3, 29 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Chichirova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonova, A.A., Chichirov, A.A. & Chichirova, N.D. The Utilization of Highly Mineralized Liquid Waste from a Chemical Desalination Water Treatment Plant of a TPP with the Generation of Electrical Energy by Reverse Electrodialysis. Membr. Membr. Technol. 3, 344–350 (2021). https://doi.org/10.1134/S251775162105005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775162105005X

Keywords:

Navigation