Skip to main content
Log in

Mathematical Modelling of a Nanoparticle Motion in a Membrane Pore under Action of Molecular Forces

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A mathematical model is developed to describe microfiltration on membrane filters with plane-parallel and cylindrical pores. Consideration is given to two cases of motion of Brownian particles having a radius R comparable to the radius of the filter channel a. Relations are presented for the dependence of the efficiency of particle deposition on the channel walls on the parameter \({{æ }} = R{{a}^{{ - 1}}}\) with different values of the molecular interaction constant and with allowance for the hydrodynamic factor. The results of modeling microfiltration on membrane filters with plane-parallel and cylindrical pores are compared. It is shown that there is a qualitative agreement between the main characteristics of the microfiltration process for these two types of membrane channel cross-section. It is established that the efficiency of purification on membrane filters with cylindrical pores is considerably more significant than the efficiency attained with plane-parallel pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. H. Li, X. Wu, M. Wang, J. Wang, S. Wu, X. Yao, and L. Li, Sep. Purif. Technol. 138, 41 (2014).

    Article  CAS  Google Scholar 

  2. M. M. Trubyanov, G. M. Mochalov, V. M. Vorotyntsev, and S. S. Suvorov, Sep. Purif. Technol. 135, 117 (2014).

    Article  CAS  Google Scholar 

  3. P. Luis, in Microfiltration, Ultrafiltration, Nanofiltration, Reverse Osmosis and Forward Osmosis, 1rd ed., Ed. by B. Van der Bruggen (Elsevier, Oxford, 2018).

    Google Scholar 

  4. M. V. Sukhanov, T. I. Storozheva, I. I. Evdokimov, V. G. Pimenov, A. Y. Sozin, and T. V. Kotereva, Inorg. Mater. 53, 142 (2017).

    Article  CAS  Google Scholar 

  5. G. G. Devyatykh, Y. E. Elliev, Y. P. Kirillov, and A. Y. Malyshev, Dokl. Akad. Nauk. 367, 371 (1999).

    CAS  Google Scholar 

  6. V. M. Vorotyntsev and V. M. Malyshev, Teor. Osn. Khim. Tekhnol. 46, 563 (2012).

    Google Scholar 

  7. V. M. Vorotyntsev and P. N. Drozdov, Sep. Purif. Technol. 22–23, 367 (2001).

    Article  Google Scholar 

  8. G. Z. Ramon and E. M. V Hoek, J. Membr. Sci. 392–393, 1 (2012).

    Article  CAS  Google Scholar 

  9. A. V. Vorotyntsev, A. N. Petukhov, M. M. Trubyanov, A. A. Atlaskin, D. A. Makarov, M. S. Sergeeva, I. V. Vorotyntsev, and V. M. Vorotyntsev, Rev. Chem. Eng. 37, 125 (2019).

    Article  CAS  Google Scholar 

  10. S. Sinha-Ray, S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, J. Membr. Sci. 485, 132 (2015).

    Article  CAS  Google Scholar 

  11. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  12. V. M. Vorotyntsev, Petr. Chem. 55, 259 (2015).

    Article  CAS  Google Scholar 

  13. D. M. Kanani, W. H. Fissel, S. Roy, A. Dabnisheva, A. Fleischman, and A. L. Zidney, J. Membr. Sci. 349, 405 (2010).

    Article  CAS  Google Scholar 

  14. D. B. Taulbee, J. Aerosol Sci. 10, 95 (1979).

    Article  Google Scholar 

  15. D. B. Ingham, J. Aerosol Sci. 7, 373 (1976).

    Article  Google Scholar 

  16. B. R. Hurschfeld, H. Brenner, and A. Falade, Physicochem. Hydrodyn. 5, 99 (1984).

    Google Scholar 

  17. P. Ganatos, S. Weinbaum, and R. Pfeffer, J. Fluid Mech. 99, 739 (1980).

    Article  Google Scholar 

  18. B. D. Bowen, S. Levine, and N. Epstein, J. Colloid Interface Sci. 54, 375 (1976).

    Article  Google Scholar 

  19. R. Cheng, T. Zhu, and L. Mao, Microfluid. Nanofluid. 16, 1143 (2013).

    Article  CAS  Google Scholar 

  20. P. Talebizadehsardari, H. Rahimzadeh, G. Ahmadi, K. Inthavong, M. M. Keshtkar, and M. A. Moghimi, Adv. Powder Technol. 31, 3134 (2020).

    Article  Google Scholar 

  21. F. London, Trans. Faraday Soc. 33, 8 (1937).

    Article  CAS  Google Scholar 

  22. B. V. Derjaguin, I. I. Abrikosova, and E. M. Lifshitz, Q. Rev. Chem. Soc. 10, 295 (1956).

    Article  Google Scholar 

  23. J. A. Logan and A. V. Tkachenko, Phys. Rev. E 98, 032609 (2018).

    Article  CAS  Google Scholar 

  24. R. Maniero, E. Climent, and P. Bacchin, Chem. Eng. Sci. 71, 409 (2012).

    Article  CAS  Google Scholar 

  25. Y. Gao, K. Zhong, and Y. Kang, Particuology 44, 159 (2019).

    Article  Google Scholar 

  26. X. Hu and D. Lu, Chin. J. Chem. Eng. 27, 1439 (2019).

    Article  CAS  Google Scholar 

  27. E. M. Lifshitz and L. P. Pitaevski, Physical Kinetics (Pergamon Press, Oxford, 1981).

    Google Scholar 

  28. H. Brenner, Chem. Eng. Sci. 16, 242 (1961).

    Article  CAS  Google Scholar 

  29. G. Boccardo, D. L. Marchisio, and R. Sethi, J. Colloid Interface Sci. 417, 227 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. D. Alghalibi, W. Fornari, M. E. Rosti, and L. Brandt, Int. J. Multiphas Flow 129, 103291 (2020).

    Article  CAS  Google Scholar 

  31. H. C. Hamaker, Physica 4, 1058 (1937).

    Article  CAS  Google Scholar 

  32. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  33. H. Sonntag and K. Strenge, Koagulation und Stabilität Disperser Systeme (VEB Deutscher Verlag der Wissenschaften, Berlin, 1970).

    Google Scholar 

  34. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, Dordrecht, 1983).

    Google Scholar 

  35. T. Brock, Membrane Filtration: A User’s Guide and Reference Manual (Science Technical Incorporation, Madison, 1983).

    Book  Google Scholar 

  36. Yu. I. Dytnerskii, Baromembrane Processes (Khimiya, Moscow, 1986).

    Google Scholar 

  37. G. N. Flerov, Vestn. Akad. Nauk SSSR 4, 35 (1984).

    Google Scholar 

  38. P. Yu. Apel, Nucl. Tracks 6, 115 (1982).

    CAS  Google Scholar 

  39. Yu. N. Kao, Y. Wang, R. Pfeffer, and S. Weinbaum, J. Colloid Interface Sci. 121, 543 (1988).

    Article  CAS  Google Scholar 

  40. G. G. Devyatykh, V. M. Vorotyntsev, Yu. S. Chertkov, and V. A. Dozorov, Vys. Veshch. 3, 44 (1988).

    Google Scholar 

  41. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  42. B. Derjaguin, Kolloid-Z. 69, 155 (1934).

    Article  Google Scholar 

  43. A. S. Dukhin and A. G. Us’yarov, Kolloidn. Zh. 49, 1055 (1987).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the Framework of the Basic Part of the State Task (project no. FSWE-2020-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Vorotyntsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorotyntsev, V.M., Petukhov, A.N., Zarubin, D.M. et al. Mathematical Modelling of a Nanoparticle Motion in a Membrane Pore under Action of Molecular Forces. Membr. Membr. Technol. 3, 245–253 (2021). https://doi.org/10.1134/S2517751621040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621040077

Keywords:

Navigation