Skip to main content
Log in

Evolution of Pheromones in Mammals

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Chemical communication is the most ancient way of information exchange between organisms. For majority of mammals, the analysis of olfactory stimuli is crucial for organization of complex behaviors. The review is devoted to the analysis of the role of pheromones in the organization of mammalian behavior in the evolutionary aspect. The discussion about the existence of human pheromones has drawn attention of scientific community in recent decades: a separate section covers this topic. Special attention is paid to the patterns of changes in the neuroanatomical sub-strate and the pool of functional genes encoding the olfactory and vomeronasal receptors in mammals, including humans. The future perspectives of research in this area are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anonymous, So much more to know, Science, 2005, vol. 309, no. 5731, pp. 78–102.

    Article  Google Scholar 

  2. Barnes, I.H.A., Ibarra-Soria, X., Fitzgerald, S., Gonzalez, J.M., Davidson, C., et al., Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding regions split across two exons, BMC Genomics, 2020, vol. 21, no. 1, p. 196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrios, A.W., Sanchez-Quinteiro, P., and Salazar, I., Dog and mouse: toward a balanced view of the mammalian olfactory system, Front. Neuroanat., 2014, vol. 8, p. 106.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bear, D.M., Lassance, J.M., Hoekstra, H.E., and Datta, S.R., The evolving neural and genetic architecture of vertebrate olfaction, Curr. Biol., 2016, vol. 26, no. 20, pp. R1039–R1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beauchamp, G.K., Doty, R.L., Moulton, D.G., and Mugford, R.A., The pheromone concept in mammalian chemical communication: a critique, in Mammalian Olfaction Reproductive Processes and Behavior, Doty, R.L., Ed., New York: Academic, 1976, pp. 143–160.

    Google Scholar 

  6. Beauchamp, G.K., Doty, R.L., Moulton, D.G., and Mugford, R.A., Letter to the editors: response to Katz and Shorey, J. Chem. Ecol., 1979, vol. 5, no. 2, pp. 301–305.

  7. Bel’kovich, V.M. and Dubrovskii, N.A., Sensornye osnovy orientatsii kitoobraznykh (Sensory Orientation of Cetacean), Leningrad: Nauka, 1976.

  8. Belluscio, L., Koentges, G., Axel, R., and Dulac, C., A map of pheromone receptor activation in the mammalian brain, Cell, 1999, vol. 97, no. 2, pp. 209–220.

    Article  CAS  PubMed  Google Scholar 

  9. Bethe, A., Vernachlässigte hormone, Naturwissenschaften, 1932, vol. 20, no. 11, pp. 177–181.

    Article  CAS  Google Scholar 

  10. Bozza, T., Feinstein, P., Zheng, C., and Mombaerts, P., Odorant receptor expression defines functional units in the mouse olfactory system, J. Neurosci., 2002, vol. 22, no. 8, pp. 3033–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brennan, P.A. and Zufall, F., Pheromonal communication in vertebrates, Nature, 2006, vol. 444, pp. 308–315.

    Article  CAS  PubMed  Google Scholar 

  12. Brykczynska, U., Tzika, A.C., Rodriguez, I., and Milinkovitch, M.C., Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles, Genome Biol. Evol., 2013, vol. 5, no. 2, pp. 389–401.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bushdid, C., Magnasco, M.O., Vosshall, L.B., and Keller, A., Humans can discriminate more than 1 trillion olfactory stimuli, Science, 2014, vol. 343, no. 6177, pp. 1370–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butenandt, A., Beckmann, R., Stamm, D., and Hecker, E., Uber den sexuallockst off des seidenspinners Bombyx mori. Reindarstellung und konstitution, Z. Naturforsch., 1959, vol. 14, pp. 283–284.

    Google Scholar 

  15. Cutler, W.B., Preti, G., Krieger, A., Huggins, G.R., Garcia, C.R., and Lawley, H.J., Human axillary secretions influence women’s menstrual cycles: the role of donor extract from men, Horm. Behav., 1986, vol. 20, no. 4, pp. 463–473.

    Article  CAS  PubMed  Google Scholar 

  16. Dennis, J.C., Smith, T.D., Bhatnagar, K.P., Bonar, C.J., Burrows, A.M., and Morrison, E.E., Expression of neuron-specific markers by the vomeronasal neuroepithelium in six species of primates, Anat. Rec., Part A, 2004, vol. 281, no. 1, pp. 1190–1200.

    Google Scholar 

  17. Dibattista, M. and Reisert, J., The odorant receptor-dependent role of olfactory marker protein in olfactory receptor neurons, J. Neurosci., 2016, vol. 36, no. 10, pp. 2995–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong, D., Jin, K., Wu, X., and Zhong, Y., CRDB: Database of chemosensory receptor gene families in vertebrate, PLoS One, 2012, vol. 7, no. 2, p. e31540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorries, K.M., Adkins-Regan, E., and Halpern, B.P., Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs, Brain Behav. Evol., 1997, vol. 49, no. 1, pp. 53–62.

    Article  CAS  PubMed  Google Scholar 

  20. Doucet, S., Soussignan, R., Sagot, P., and Schaal, B., The secretion of areolar (Montgomery’s) glands from lactating women elicits selective, unconditional responses in neonates, PLoS One, 2009, vol. 4, no. 10, p. e7579.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dulac, C. and Axel, R., A novel family of genes encoding putative pheromone receptors in mammals, Cell, 1995, vol. 83, no. 2, pp. 195–206.

    Article  CAS  PubMed  Google Scholar 

  22. Emes, R.D., Beatson, S.A., Ponting, C.P., and Goodstadt, L., Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents, Genome Res., 2004, vol. 14, no. 4, pp. 591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eyun, S.I., Accelerated pseudogenization of trace amine-associated receptor genes in primates, Genes Brain Behav., 2019, vol. 18, no. 6, p. e12543.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eyun, S.I., Moriyama, H., Hoffmann, F.G., and Moriyama, E.N., Molecular evolution and functional divergence of trace amine-associated receptors, PLoS One, 2016, vol. 11, no. 3, p. e0151023.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Francia, S., Pifferi, S., Menini, A., and Tirindelli, R., Vomeronasal receptors and signal transduction in the vomeronasal organ of mammals, in Neurobiology of Chemical Communication, Mucignat-Caretta, C., Ed., Boca Raton, FL: CRC Press, 2014, pp. 297–323.

    Google Scholar 

  26. Gerkin, R.C. and Castro, J.B., The number of olfactory stimuli that humans can discriminate is still unknown, eLife, 2015, vol. 4, p. e08127.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gildersleeve, K.A., Haselton, M.G., Larson, C.M., and Pillsworth, E.G., Body odor attractiveness as a cue of impending ovulation in women: evidence from a study using hormone-confirmed ovulation, Horm. Behav., 2012, vol. 61, no. 2, pp. 157–166.

    Article  CAS  PubMed  Google Scholar 

  28. Goldman, S.E. and Schneider, H.G., Menstrual synchrony: social and personality factors, J. Soc. Behav. Pers., 1987, vol. 2, pp. 243–250.

    Google Scholar 

  29. Graham, C.A. and McGrew, W.C., Menstrual synchrony in female undergraduates living on a coeducational campus, Psychoneuroendocrinology, 1980, vol. 5, no. 3, pp. 245–252.

    Article  CAS  PubMed  Google Scholar 

  30. Greer, P.L., Bear, D.M., Lassance, J.M., Bloom, M.L., Tsukahara, T., et al., A family of non-gpcr chemosensors defines an alternative logic for mammalian olfaction, Cell, 2016, vol. 165, no. 7, pp. 1734–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grus, W.E. and Zhang, J., Rapid turnover and species-specificity of vomeronasal pheromone receptor genes in mice and rats, Gene, 2004, vol. 340, no. 2, pp. 303–312.

    Article  CAS  PubMed  Google Scholar 

  32. Grus, W.E. and Zhang, J., Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis, Mol. Biol. Evol., 2008, vol. 25, no. 8, pp. 1593–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grus, W.E. and Zhang, J., Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates, Mol. Biol. Evol., 2009, vol. 26, no. 2, pp. 407–419.

    Article  CAS  PubMed  Google Scholar 

  34. Grus, W.E., Shi, P., and Zhang, J., Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus, Mol. Biol. Evol., 2007, vol. 24, no. 10, pp. 2153–2157.

    Article  CAS  PubMed  Google Scholar 

  35. Grus, W.E., Shi, P., Zhang, Y.P., and Zhang, J., Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 16, pp. 5767–5772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haga, S., Hattori, T., Sato, T., Sato, K., Matsuda, S., et al., The male mouse pheromone ESP1 enhances female sexual receptive behavior through a specific vomeronasal receptor, Nature, 2010, vol. 466, no. 7302, pp. 118–122.

    Article  CAS  PubMed  Google Scholar 

  37. Haga-Yamanaka, S., Ma, L., He, J., Qiu, Q., Lavis, L.D., et al., Integrated action of pheromone signals in promoting courtship behavior in male mice, eLife, 2014, vol. 3, p. e03025.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Halpern, M. and Martinez-Marcos, A., Structure and function of the vomeronasal system: an update, Prog. Neurobiol., 2003, vol. 70, no. 3, pp. 245–318.

    Article  CAS  PubMed  Google Scholar 

  39. Hashiguchi, Y., Furuta, Y., and Nishida, M., Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes, PLoS One, 2008, vol. 3, no. 12, p. e4083.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Havlicek, J., Roberts, S.C., and Flegr, J., Women’s preference for dominant male odor: effects of menstrual cycle and relationship status, Biol. Lett., 2005, vol. 1, no. 3, pp. 256–259.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hayden, S., Bekaert, M., Crider, T.A., Mariani, S., Murphy, W.J., and Teeling, E.C., Ecological adaptation determines functional mammalian olfactory subgenomes, Genome Res., 2010, vol. 20, no. 1, pp. 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hohenbrink, P., Radespiel, U., and Mundy, N.I., Pervasive and ongoing positive selection in the vomeronasal-1 receptor (V1R) repertoire of mouse lemurs, Mol. Biol. Evol., 2012, vol. 29, no. 12, pp. 3807–3816.

    Article  CAS  PubMed  Google Scholar 

  43. Hohenbrink, P., Mundy, N.I., Zimmermann, E., and Radespiel, U., First evidence for functional vomeronasal 2 receptor genes in primates, Biol. Lett., 2013, vol. 9, no. 1, art. ID 20121006.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hughes, G.M., Boston, E.S.M., Finarelli, J.A., Murphy, W.J., Higgins, D.G., and Teeling, E.C., The birth and death of olfactory receptor gene families in mammalian niche adaptation, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1390–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hussain, A., Saraiva, L.R., and Korsching, S.I., Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 11, pp. 4313–4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishii, T. and Mombaerts, P., Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse, Mol. Cell. Neurosci., 2011, vol. 46, no. 2, pp. 397–408.

    Article  CAS  PubMed  Google Scholar 

  47. Isogai, Y., Si, S., Pont-Lezica, L., Tan, T., Kapoor, V., et al., Molecular organization of vomeronasal chemoreception, Nature, 2011, vol. 478, no. 7368, pp. 241–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jacob, S. and McClintock, M.K., Psychological state and mood effects of steroidal chemosignals in women and men, Horm. Behav., 2000, vol. 37, no. 1, pp. 57–78.

    Article  CAS  PubMed  Google Scholar 

  49. Jiao, H., Hong, W., Nevo, E., Li, K., and Zhao, H., Convergent reduction of V1R genes in subterranean rodents, BMC Evol. Biol., 2019, vol. 19, no. 1, p. 176.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnston, R.E., Chemical signals and reproductive behavior, in Pheromones and Reproduction in Mammals, Vandenbergh, J.G., Ed., New York: Academic, 1983, pp. 27–31.

    Google Scholar 

  51. Karlson, P. and Luscher, M., ‘Pheromones’: a new term for a class of biologically active substances, Nature, 1959, vol. 183, no. 4653, pp. 55–56.

    Article  CAS  PubMed  Google Scholar 

  52. Katz, R.A. and Shorey, H.H., In defense of the term “pheromone,” J. Chem. Ecol., 1979, vol. 5, no. 2, pp. 299–301.

    Article  CAS  Google Scholar 

  53. Keller, A., Zhuang, H., Chi, Q., Vosshall, L.B., and Matsunami, H., Genetic variation in a human odorant receptor alters odour perception, Nature, 2007, vol. 449, no. 7161, pp. 468–472.

    Article  CAS  PubMed  Google Scholar 

  54. Keller, M., Baum, M.J., Brock, O., Brennan, P.A., and Bakker, J., The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior, Behav. Brain. Res., 2009, vol. 200, no. 2, pp. 268–276.

    Article  PubMed  Google Scholar 

  55. Kelliher, K.R., Baum, M.J., and Meredith, M., The ferret’s vomeronasal organ and accessory olfactory bulb: effect of hormone manipulation in adult males and females, Anat. Rec., 2001, vol. 263, no. 3, pp. 280–288.

    Article  CAS  PubMed  Google Scholar 

  56. Kelliher, K.R., Spehr, M., Li, X.H., Zufall, F., and Leinders-Zufall, T., Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing, Eur. J. Neurosci., 2006, vol. 23, no. 12, pp. 3385–3390.

    Article  PubMed  Google Scholar 

  57. Keverne, E.B., The vomeronasal organ, Science, 1999, vol. 286, no. 5440, pp. 716–720.

    Article  CAS  PubMed  Google Scholar 

  58. Kikuyama, S., Toyoda, F., Ohmiya, Y., Matsuda, K., Tanaka, S., and Hayashi, H., Sodefrin: a female-attracting peptide pheromone in newt cloacal glands, Science, 1995, vol. 267, pp. 1643–1645.

    Article  CAS  PubMed  Google Scholar 

  59. Kimoto, H., Haga, S., Sato, K., and Touhara, K., Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons, Nature, 2005, vol. 437, pp. 898–901.

    Article  CAS  PubMed  Google Scholar 

  60. Kishida, T., Kubota, S., Shirayama, Y., and Fukami, H., The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans, Biol. Lett., 2007, vol. 3, no. 4, pp. 428–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kurzweil, V.C., Getman, M., Green, E.D., and Lane, R.P., Dynamic evolution of V1R putative pheromone receptors between Mus musculus and Mus spretus, BMC Genomics, 2009, vol. 10, p. 74.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Laktionova, T., Kvasha, I., and Voznessenskaya, V., Male axillary secretions affect saliva LH in women depending on the phase of their menstrual cycle, Chem. Sens., 2020, vol. 45, no. 2, pp. 163–164.

    Google Scholar 

  63. Lane, R.P., Young, J., Newman, T., and Trask, B.J., Species specificity in rodent pheromone receptor repertoires, Genome Res., 2004, vol. 14, no. 4, pp. 603–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laska, M., Genzel, D., and Wieser, A., The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers, Chem. Sens., 2005, vol. 30, no. 2, pp. 171–175.

    Article  CAS  Google Scholar 

  65. Leinders-Zufall, T., Lane, A.P., Puche, A.C., Ma, W., Novotny, M.V., et al., Ultrasensitive pheromone detection by mammalian vomeronasal neurons, Nature, 2000, vol. 405, no. 6788, pp. 792–796.

    Article  CAS  PubMed  Google Scholar 

  66. Leinders-Zufall, T., Brennan, P., Widmayer, P., Chandramani, S.P., Maul-Pavicic, A., et al., MHC class I peptides as chemosensory signals in the vomeronasal organ, Science, 2004, vol. 306, no. 5698, pp. 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  67. Leinders-Zufall, T., Ishii, T., Chamero, P., Hendrix, P., Oboti, L., et al., A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons, J. Neurosci., 2014, vol. 34, no. 15, pp. 5121–5133.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liberles, S.D. and Buck, L.B., A second class of chemosensory receptors in the olfactory epithelium, Nature, 2006, vol. 442, no. 7103, pp. 645–650.

    Article  CAS  PubMed  Google Scholar 

  69. Liberles, S.D., Horowitz, L.F., Kuang, D., Contos, J.J., Wilson, K.L., et al., Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 24, pp. 9842–9847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, D.Y., Zhang, S.Z., Block, E., and Katz, L.C., Encoding social signals in the mouse main olfactory bulb, Nature, 2005, vol. 434, no. 7032, pp. 470–477.

    Article  CAS  PubMed  Google Scholar 

  71. Lindemann, L., Ebeling, M., Kratochwil, N.A., Bunzow, J.R., Grandy, D.K., and Hoener, M.C., Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors, Genomics, 2005, vol. 85, no. 3, pp. 372–385.

    Article  CAS  PubMed  Google Scholar 

  72. Lubke, K.T. and Pause, B.M., Sex-hormone dependent perception of androstenone suggests its involvement in communicating competition and aggression, Physiol. Behav., 2014, vol. 123, pp. 136–141.

    Article  PubMed  Google Scholar 

  73. Mainland, J.D., Keller, A., Li, Y.R., Zhou, T., Trimmer, C., et al., The missense of smell: functional variability in the human odorant receptor repertoire, Nat. Neurosci., 2014, vol. 17, no. 1, pp. 114–120.

    Article  CAS  PubMed  Google Scholar 

  74. Malnic, B., Hirono, J., Sato, T., and Buck, L.B., Combinatorial receptor codes for odors, Cell, 1999, vol. 96, no. 5, pp. 713–723.

    Article  CAS  PubMed  Google Scholar 

  75. Matsui, A., Go, Y., and Niimura, Y., Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision, Mol. Biol. Evol., 2010, vol. 27, no. 5, pp. 1192–1200.

    Article  CAS  PubMed  Google Scholar 

  76. McClintock, M.K., Menstrual synchrony and suppression, Nature, 1971, vol. 229, pp. 244–245.

    Article  CAS  PubMed  Google Scholar 

  77. McGann, J.P., Poor human olfaction is a 19th-century myth, Science, 2017, vol. 356, no. 6338, p. eaam7263.

  78. Meisami, E. and Bhatnagar, K.P., Structure and diversity in mammalian accessory olfactory bulb, Microsc. Res. Tech., 1998, vol. 43, no. 6, pp. 476–499.

    Article  CAS  PubMed  Google Scholar 

  79. Melrose, D.R., Reed, H.C., and Patterson, R.L., Androgen steroids associated with boar odour as an aid to the detection of oestrus in pig artificial insemination, Br. Vet. J., 1971, vol. 127, no. 10, pp. 497–502.

    Article  CAS  PubMed  Google Scholar 

  80. Migeotte, I., Communi, D., and Parmentier, M., Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses, Cytokine Growth Factor Rev., 2006, vol. 17, no. 6, pp. 501–519.

    Article  CAS  PubMed  Google Scholar 

  81. Miller, C.H., Campbell, P., and Sheehan, M.J., Distinct evolutionary trajectories of V1R clades across mouse species, BMC Evol. Biol., 2020, vol. 20, p. 99.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mombaerts, P., Genes and ligands for odorant, vomeronasal and taste receptors, Nat. Rev. Neurosci., 2004, vol. 5, no. 4, pp. 263–278.

    Article  CAS  PubMed  Google Scholar 

  83. Morè, L. Mouse major urinary proteins trigger ovulation via the vomeronasal organ, Chem. Sens., 2006, vol. 31, pp. 393–401.

    Article  Google Scholar 

  84. Murata, K., Tamogam,i S., Itou, M., Ohkubo, Y., Wakabayashi, Y., et al., Identification of an olfactory signal molecule that activates the central regulator of reproduction in goats, Curr. Biol., 2014, vol. 24, no. 6, pp. 681–686.

  85. Nei, M., Niimura, Y., and Nozawa, M., The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity, Nat. Rev. Genet., 2008, vol. 9, no. 12, pp. 951–963.

    Article  CAS  PubMed  Google Scholar 

  86. Niimura, Y., Olfactory receptor genes: evolution, in eLS, Chichester: Wiley, 2014, pp. 1–12.

  87. Niimura, Y. and Nei, M., Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice, Gene, 2005, vol. 346, pp. 13–21.

    Article  CAS  PubMed  Google Scholar 

  88. Niimura, Y. and Nei, M., Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates, J. Hum. Genet., 2006, vol. 51, no. 6, pp. 505–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niimura, Y. and Nei, M., Extensive gains and losses of olfactory receptor genes in mammalian evolution, PLoS One, 2007, vol. 2, no. 8, p. e708.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Niimura, Y., Matsui, A., and Touhara, K., Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals, Genome Res., 2014, vol. 24, no. 9, pp. 1485–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nodari, F., Hsu, F.F., Fu, X., Holekamp, T.F., Kao, L.F., et al., Sulfated steroids as natural ligands of mouse pheromone-sensing neurons, J. Neurosci., 2008, vol. 28, no. 25, pp. 6407–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Novikov, S.N., Feromony i razmnozhenie mlekopitayushchikh: Fiziologicheskie aspekty (Pheromones and Mammalian Reproduction: Physiological Aspects), Leningrad: Nauka, 1988.

  93. Novotny, M.V., Pheromones, binding proteins and receptor responses in rodents, Biochem. Soc. Trans., 2003, vol. 31, no. 1, pp. 117–122.

    Article  CAS  PubMed  Google Scholar 

  94. Novotny, M., Harvey, S., Jemiolo, B., and Alberts, J., Synthetic pheromones that promote inter-male aggression in mice, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, no. 7, pp. 2059–2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Novotny, M.V., Ma, W., Wiesler, D., and Zidek, L., Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein, Proc. R. Soc. B, 1999, vol. 266, no. 1432, pp. 2017–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ohara, H., Nikaido, M., Date-Ito, A., Mogi, K., Okamura, H., et al., Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species, BMC Evol. Biol., 2009, vol. 9, p. 233.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Olender, T., Waszak, S.M., Viavant, M., Khen, M., Ben-Asher, E., et al., Personal receptor repertoires: olfaction as a model, BMC Genomics, 2012, vol. 13, p. 414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park, S.H., Podlaha, O., Grus, W.E., and Zhang, J., The microevolution of V1r vomeronasal receptor genes in mice, Genome Biol. Evol., 2011, vol. 3, pp. 401–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pfister, P., Randall, J., Montoya-Burgos, J.I., and Rodriguez, I., Divergent evolution among teleost V1r receptor genes, PLoS One, 2007, vol. 2, no. 4, p. e379.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Preti, G., Cutler, W.B., Garcia, C.R., Huggins, G.R., and Lawley, H.J., Human axillary secretions influence women’s menstrual cycles: the role of donor extract of females, Horm. Behav., 1986, vol. 20, no. 4, pp. 474–482.

    Article  CAS  PubMed  Google Scholar 

  101. Preti, G., Wysocki, C.J., Barnhart, K.T., Sondheimer, S.J., and Leyden, J.J., Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients, Biol. Reprod., 2003, vol. 68, no. 6, pp. 2107–2113.

    Article  CAS  PubMed  Google Scholar 

  102. Rasmussen, L.E., Lee, T.D., Roelofs, W.L., Zhang, A., and Daves, G.D., Jr., Insect pheromone in elephants, Nature, 1996, vol. 379, no. 6567, p. 684.

    Article  CAS  PubMed  Google Scholar 

  103. Rivière, S., Challet, L., Fluegge, D., Spehr, M., and Rodriguez, I., Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors, Nature, 2009, vol. 459, no. 7246, pp. 574–577.

    Article  PubMed  Google Scholar 

  104. Roberts, S.C., Havlicek, J., and Schaal, B., Human olfactory communication: current challenges and future prospects, Philos. Trans. R. Soc., B, 2020, vol. 375, no. 1800, art. ID 20190258.

  105. Rodriguez, I. Remarkable diversity of mammalian pheromone receptor repertoires, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 19, pp. 6639–6640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez, I., Vomeronasal receptors: V1Rs, V2Rs, and FPRs, in Chemosensory Transduction, Zufall, F. and Munger, S.D., Eds., Cambridge: Academic, 2016, pp. 175–190.

    Google Scholar 

  107. Rodriguez, I. and Mombaerts, P., Novel human vomeronasal receptor-like genes reveal species-specific families, Curr. Biol., 2002, vol. 12, no. 12, pp. R409–R411.

    Article  CAS  PubMed  Google Scholar 

  108. Rodriguez, I., Feinstein, P., and Mombaerts, P., Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system, Cell, 1999, vol. 97, no. 2, pp. 199–208.

    Article  CAS  PubMed  Google Scholar 

  109. Rodriguez, I., Del Punta, K., Rothman, A., Ishii, T., and Mombaerts, P., Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors, Nat. Neurosci., 2002, vol. 5, pp. 134–140.

  110. Russell, M.J., Switz, G.M., and Thompson, K., Olfactory influences on the human menstrual cycle, Pharmacol. Biochem. Behav., 1980, vol. 13, no. 5, pp. 737–738.

    Article  CAS  PubMed  Google Scholar 

  111. Sachs, B.D., Airborne aphrodisiac odor from estrous rats: implication for pheromonal classification, in Advances in Chemical Signals in Vertebrates, Johnston, R.E., Müller-Schwarze, D., and Sorenson, P.W., Eds., New York: Kluwer, 1999, pp. 333–342.

    Google Scholar 

  112. Saito, H., Chi, Q., Zhuang, H., Matsunami, H., and Mainland, J.D., Odor coding by a mammalian receptor repertoire, Sci. Signaling, 2009, vol. 2, no. 60, p. ra9.

    Article  Google Scholar 

  113. Salazar, I., Lombardero, M., Aleman, N., and Sanchez Quinteiro, P., Development of the vomeronasal receptor epithelium and the accessory olfactory bulb in sheep, Microsc. Res. Tech., 2003, vol. 61, no. 5, pp. 438–447.

    Article  PubMed  Google Scholar 

  114. Sam, M., Vora, S., Malnic, B., Ma, W., Novotny, M.V., and Buck, L.B., Neuropharmacology. Odorants may arouse instinctive behaviors, Nature, 2001, vol. 412, no. 6843, p. 142.

    Article  CAS  PubMed  Google Scholar 

  115. Saraiva, L.R. and Korsching, S.I., A novel olfactory receptor gene family in teleost fish, Genome Res., 2007, vol. 17, no. 10, pp. 1448–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saraiva, L.R., Riveros-McKay, F., Mezzavilla, M., Abou-Moussa, E.H., Arayata, C.J., et al., A transcriptomic atlas of mammalian olfactory mucosae reveals an evolutionary influence on food odor detection in humans, Sci. Adv., 2019, vol. 5, no. 7, p. eaax0396.

  117. Schaal, B., Olfaction in infants and children: developmental and functional perspectives, Chem. Sens., 1988, vol. 13, pp. 145–190.

    Article  Google Scholar 

  118. Schaal, B. and Al Aïn, S., Chemical signals ‘selected for’ newborns in mammals, Anim. Behav., 2014, vol. 97, pp. 289–299.

    Article  Google Scholar 

  119. Schaal, B., Coureaud, G., Langlois, D., Ginies, C., Semon, E., and Perrier, G., Chemical and behavioural characterization of the rabbit mammary pheromone, Nature, 2003, vol. 424, no. 6944, pp. 68–72.

    Article  CAS  PubMed  Google Scholar 

  120. Schank, J.C., Menstrual-cycle synchrony: problems and new directions for research, J. Comp. Psychol., 2001, vol. 115, no. 1, pp. 3–15.

    Article  CAS  PubMed  Google Scholar 

  121. Serizawa, S., Ishii, T., Nakatani, H., Tsuboi, A., Nagawa, F., et al., Mutually exclusive expression of odorant receptor transgenes, Nat. Neurosci., 2000, vol. 3, no. 7, pp. 687–693.

    Article  CAS  PubMed  Google Scholar 

  122. Shepherd, G.M., The human sense of smell: Are we better than we think? PLoS Biol., 2004, vol. 2, no. 5, p. e146.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shi, P. and Zhang, J., Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land, Genome Res., 2007, vol. 17, no. 2, pp. 166–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shi, P., Bielawski, J.P., Yang, H., and Zhang, Y.P., Adaptive diversification of vomeronasal receptor 1 genes in rodents, J. Mol. Evol., 2005, vol. 60, no. 5, pp. 566–576.

    Article  CAS  PubMed  Google Scholar 

  125. Shinohara, K., Morofushi, M., Funabashi, T., and Kimura, F., Axillary pheromones modulate pulsatile LH secretion in humans, Neuroreport, 2001, vol. 12, no. 5, pp. 893–895.

    Article  CAS  PubMed  Google Scholar 

  126. Silva, L. and Antunes, A., Vomeronasal receptors in vertebrates and the evolution of pheromone detection, Ann. Rev. Anim. Biosci., 2017, vol. 5, pp. 353–370.

    Article  CAS  Google Scholar 

  127. Silvotti, L., Cavalca, E., Gatti, R., Percudani, R., and Tirindelli, R., A recent class of chemosensory neurons developed in mouse and rat, PLoS One, 2011, vol. 6, no. 9, p. e24462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Singh, D. and Bronstad, P.M., Female body odor is a potential cue to ovulation, Proc. R. Soc. B, 2001, vol. 268, no. 1469, pp. 797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sokolov, V.E., Feromony i povedenie (Pheromones and Behavior), Moscow: Nauka, 1982.

  130. Sokolov, V.E. and Voznessenskaya, V.V., The role of early olfactory experience in individual recognition in the brown rat, Dokl. Ross. Akad. Nauk, 1997, vol. 348, no. 5, pp. 140–142.

    Google Scholar 

  131. Sokolov, V.E., Chernyshev, M.K., Voznessenskaya, V.V., and Zinkevich, E.P., Biorhythmological approach to assessment of the influence of olfactory signals on the reproductive state of the brown rat Rattus norvegicus, Izv. Akad. Nauk SSSR, Ser. Biol., 1990, no. 2, pp. 248–260.

  132. Sokolov, V.E., Voznessenskaya, V.V., and Zinkevich, E.P., Olfactory cues and ovarian cycles, in Chemical Signals in Vertebrates, Doty, R.L. and Muller-Schwarze, D., Eds., New York: Plenum, 1992, pp. 267–270.

    Google Scholar 

  133. Sokolov, V.E., Voznessenskaya, V.V., and Vaisoki, Ch.D., Induced odorant sensitivity: a new phenomenon, Dokl. Ross. Akad. Nauk, 1996, vol. 347, no. 3, pp. 843–846.

    CAS  Google Scholar 

  134. Spehr, M., Kelliher, K.R., Li, X.H., Boehm, T., Leinders-Zufall, T., and Zufall, F., Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands, J. Neurosci., 2006, vol. 26, no. 7, pp. 1961–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stern, K. and McClintock, M.K., Regulation of ovulation by human pheromones, Nature, 1998, vol. 392, no. 6672, pp. 177–179.

    Article  CAS  PubMed  Google Scholar 

  136. Strassmann, B.L., The biology of menstruation in Homo sapiens: total lifetime menses, fecundity, and nonsynchrony in a natural fertility population, Curr. Anthropol., 1997, vol. 38, pp. 123–129.

    Article  Google Scholar 

  137. Surov, A.V. and Maltsev, A.N., Analysis of chemical communication in mammals: zoological and ecological aspects, Biol. Bull. (Moscow), 2016, vol. 43, no. 9, pp. 1175–1183.

    Article  Google Scholar 

  138. Suzuki, H., Nishida, H., Kondo, H., Yoda, R., Iwata, T., et al., A single pheromone receptor gene conserved across 400 My of vertebrate evolution, Mol. Biol. Evol., 2018, vol. 35, no. 12, pp. 2928–2939.

    CAS  PubMed  Google Scholar 

  139. Syed, A.S., Sansone, A., Nadler, W., Manzini, I., and Korsching, S.I., Ancestral amphibian v2rs are expressed in the main olfactory epithelium, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 19, pp. 7714–7719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takigami, S., Mori, Y., and Ichikawa, M., Projection pattern of vomeronasal neurons to the accessory olfactory bulb in goats, Chem. Sens., 2000, vol. 25, no. 4, pp. 387–393.

    Article  CAS  Google Scholar 

  141. Takigami, S., Mori, Y., Tanioka, Y., and Ichikawa, M., Morphological evidence for two types of mammalian vomeronasal system, Chem. Sens., 2004, vol. 29, no. 4, pp. 301–310.

    Article  Google Scholar 

  142. Voznessenskaya, V.V. and Klyuchnikova, M.A., The role of the primary and secondary olfactory systems in the detection of the mammalian pheromone androstenone in the house mouse, Sens. Sist., 2009, vol. 23, no. 1, pp. 67–71.

    Google Scholar 

  143. Voznessenskaya, V.V. and Laktionova, T.K., Influence of the male axillary extracts on regulation of menstrual cycles in women, Dokl. Biol. Sci., 2018, vol. 478, no. 1, pp. 19–21.

    Article  CAS  PubMed  Google Scholar 

  144. Voznessenskaya, V.V., Wysocki, C.J., and Zinkevich, E.P., Regulation of the rat estrous cycle by predator odors: role of the vomeronasal organ, in Chemical Signals in Vertebrates, Doty, R.L. and Muller-Schwarze, D., Eds., New York: Plenum, 1992, pp. 281–283.

    Google Scholar 

  145. Voznessenskaya, V., Parfyonova, V., and Wysocki, C., Induced olfactory sensitivity in rodents: a general phenomenon, Adv. Biosci., 1995, vol. 93, pp. 399–406.

    Google Scholar 

  146. Voznessenskaya, V.V., Wysocki, C.J., Chukhrai, E.S., Poltorack, O.M., and Atyaksheva, L.F., Long-lasting effects of chemical exposures in mice, in Advances in Chemical Signals in Vertebrates, Johnston, R.E., Muller-Schwarze, D., and Sorenson, P.W., Eds., New York: Kluwer, 1999, pp. 563–571.

    Google Scholar 

  147. Voznessenskaya, V.V., Klyuchnikova, M.A., and Wysocki, C.J., Roles of the main olfactory and vomeronasal systems in the detection of androstenone in inbred strains of mice, Curr. Zool., 2010, vol. 56, no. 6, pp. 813–818.

    Article  CAS  Google Scholar 

  148. Wakabayashi, Y., Mori, Y., Ichikawa, M., Yazaki, K., and Hagino-Yamagishi, K., A putative pheromone receptor gene is expressed in two distinct olfactory organs in goats, Chem. Sens., 2002, vol. 27, no. 3, pp. 207–213.

    Article  CAS  Google Scholar 

  149. Wang, G., Shi, P., Zhu, Z., and Zhang, Y.P., More functional V1R genes occur in nest-living and nocturnal terricolous mammals, Genome Biol. Evol., 2010, vol. 2, pp. 277–283.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Weller, A. and Weller, L. Menstrual synchrony between mothers and daughters and between roommates, Physiol. Behav., 1993, vol. 53, no. 5, pp. 943–949.

    Article  CAS  PubMed  Google Scholar 

  151. Weller, L., Weller, A., and Roizman, S., Human menstrual synchrony in families and among close friends: examining the importance of mutual exposure, J. Comp. Psychol., 1999, vol. 113, no. 3, pp. 261–268.

    Article  CAS  PubMed  Google Scholar 

  152. Wilson, H.C., Kiefhaber, S.H., and Gravel, V., Two studies of menstrual synchrony: negative results, Psychoneuroendocrinology, 1991, vol. 16, pp. 353–359.

    Article  CAS  PubMed  Google Scholar 

  153. Witt, M. and Wozniak, W., Structure and function of the vomeronasal organ, Adv. Otorhinolaryngol., 2006, vol. 63, pp. 70–83.

    PubMed  Google Scholar 

  154. Wyatt, T.D., Pheromones and Animal Behavior: Chemical Signals and Signatures, Cambridge: Cambridge Univ. Press, 2014, 2nd ed.

    Book  Google Scholar 

  155. Wyatt, T.D., The search for human pheromones: the lost decades and the necessity of returning to first principles, Proc. R. Soc. B, 2015, vol. 282, no. 1804, art. ID 20142994.

  156. Wyatt, T.D., Reproducible research into human chemical communication by cues and pheromones: learning from psychology’s renaissance, Philos. Trans. R. Soc., B, 2020, vol. 375, no. 1800, art. ID 20190262.

  157. Wysocki, C.J., Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction, Neurosci. Biobehav. Rev., 1979, vol. 3, no. 4, pp. 301–341.

    Article  CAS  PubMed  Google Scholar 

  158. Yamazaki, K., Boyse, E.A., Miké, V., Thaler, H.T., Mathieson, B.J., et al., Control of mating preferences in mice by genes in the major histocompatibility complex, J. Exp. Med., 1976, vol. 144, no. 5, pp. 1324–1335.

    Article  CAS  PubMed  Google Scholar 

  159. Yamazaki, K., Yamaguchi, M., Baranoski, L., Bard, J., Boyse, E.A., and Thomas, L., Recognition among mice. Evidence from the use of a Y-maze differentially scented by congenic mice of different major histocompatibility types, J. Exp. Med., 1979, vol. 150, no. 4, pp. 755–760.

    Article  CAS  PubMed  Google Scholar 

  160. Yang, H., and Shi, P., Molecular and evolutionary analyses of formyl peptide receptors suggest the absence of VNO-specific FPRs in primates, J. Genet. Genomics, 2010, vol. 37, no. 12, pp. 771–778.

    Article  PubMed  Google Scholar 

  161. Yang, H., Shi, P., Zhang, Y.P., and Zhang, J., Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats, Genomics, 2005, vol. 86, no. 3, pp. 306–315.

    Article  CAS  PubMed  Google Scholar 

  162. Yoder, A.D. and Larsen, P.A., The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown, Front. Neuroanat., 2014, vol. 8, p. 153.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Young, J.M. and Trask, B.J., V2R gene families degenerated in primates, dog and cow, but expanded in opossum, Trends Genet., 2007, vol. 23, no. 5, pp. 212–215.

    Article  CAS  PubMed  Google Scholar 

  164. Young, J.M., Kambere, M., Trask, B.J., and Lane, R.P., Divergent V1R repertoires in five species: amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs, Genome Res., 2005, vol. 15, no. 2, pp. 231–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Young, J.M., Massa, H.F., Hsu, L., and Trask, B.J., Extreme variability among mammalian V1R gene families, Genome Res., 2010, vol. 20, no. 1, pp. 10–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zancanaro, C., Vomeronasal organ—a short history of discovery and an account of development and morphology in the mouse, in Neurobiology of Chemical Communication, Mucignat-Caretta, C., Ed., Boca Raton, FL: CRC Press, 2014, pp. 2–298.

    Google Scholar 

  167. Zhang, J. and Webb, D.M., Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 14, pp. 8337–8341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, J. and Webb, D.M., Rapid evolution of primate antiviral enzyme APOBEC3G, Hum. Mol. Genet., 2004, vol. 13, no. 16, pp. 1785–1791.

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, X., Zhang, X., and Firestein, S., Comparative genomics of odorant and pheromone receptor genes in rodents, Genomics, 2007, vol. 89, no. 4, pp. 441–450.

    Article  CAS  PubMed  Google Scholar 

  170. Zhao, H., Xu, D., Zhang, S., and Zhang, J., Widespread losses of vomeronasal signal transduction in bats, Mol. Biol. Evol., 2011, vol. 28, no. 1, pp. 7–12.

    Article  PubMed  Google Scholar 

  171. Zuccolo, J., Bau, J., Childs, S.J., Goss, G.G., Sensen, C.W., and Deans, J.P., Phylogenetic analysis of the MS4A and TMEM176 gene families, PLoS One, 2010, vol. 5, no. 2, p. e9369.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zufall, F., Kelliher, K.R., and Leinders-Zufall, T., Pheromone detection by mammalian vomeronasal neurons, Microsc. Res. Tech., 2002, vol. 58, no. 3, pp. 251–260.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Research was funded by Russian Foundation for Basic Research, project no. 19-11-50296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Voznessenskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voznessenskaya, V.V., Klyuchnikova, M.A. & Laktionova, T.K. Evolution of Pheromones in Mammals. Biol Bull Rev 12, 49–64 (2022). https://doi.org/10.1134/S2079086422010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422010091

Navigation