Skip to main content
Log in

Effects of Space Radiation and Combined Impact of Radiation and Other Spaceflight Factors on CNS Functions in Model Experiments on Animals

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—The effects of space radiation on the central nervous system, which are the most relevant to the assessment of radiation risk in interplanetary flights, can only be addressed in model ground-based experiments on animals. The article substantiates the methodology and presents the results of such experiments: long-term exposure to radiation was simulated using fractionated gamma irradiation of animals combined with exposure to hypogravity (antiorthostatic suspension of rats), and the specific effects of irradiation with 12C carbon ions and protons were simulated in accelerator experiments. Exposure to 12C ions has been shown to evoke significant changes in the brain monoamine metabolism, with the prefrontal cortex, the nucleus accumbens, and the hippocampus characterized as the most sensitive structures. However, the effects of exposure to high-energy protons in similar doses were almost similar to the effects of gamma radiation and could be characterized as minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alexander, S.P.H., Mathie, A., and Peters, J.A., Guide to receptors and channels (GRAC), Br. J. Pharmacol., 2011, vol. 164, suppl. 1, pp. S1–S324.

    Article  CAS  PubMed  Google Scholar 

  2. Barson, J.R., Morganstern, I., and Leibowitz, S.F., Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol, Physiol. Behav., 2011, vol. 104, no. 1, pp. 128–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bazyan, A.S., Neuromodulatory integrative mechanisms of emotional and motivation states, Neurochem. J., 1999, vol. 16, no. 2, pp. 88–103.

    CAS  Google Scholar 

  4. Bazyan, A.S., Interaction of the brain mediator and modulator systems and their role in development of psychophysiological and psychopathological conditions, Usp. Fiziol. Nauk, 2001, vol. 32, no. 3, pp. 3–22.

    CAS  Google Scholar 

  5. Bazyan, A.S. and Segal, O.L., Synaptic and paracrine nonsynaptic systems of the mammalian brain, Neurochem. J., 2009, vol. 26, no. 2, pp. 93–103.

    CAS  Google Scholar 

  6. Bazyan, A.S., Getsova, V.M., Orlova, N.V. Modification of brain monoamines and reaction of emotional resonance by dalargin: mechanisms of emotional state formation, Zh. Vyssh. Nervn. Deyat. Im. I.S. Pavlova, 2000, vol. 50, no. 3, pp. 500–508.

    CAS  Google Scholar 

  7. Bazyan, A.S., Grigor’yan, G.A., and Ioffe, M.E., Regulation of motor behavior, Usp. Fiziol. Nauk, 2011, vol. 42, no. 3, pp. 65–80.

    Google Scholar 

  8. Bechara, A. and Damasio, A.R., The somatic marker hypothesis: a neural theory of economic decision, Games Econ. Behav., 2005, vol. 52, no. 2, pp. 336–372.

    Article  Google Scholar 

  9. Berridge, K.C. and Kringelbach, M.L., Affective neuroscience of pleasure: reward in humans and animals, Psychopharmacology, 2008, vol. 199, no. 3, pp. 457–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bilkey, D.K., Space and context in the temporal cortex, Hippocampus, 2007, vol. 17, no. 9, pp. 813–825.

    Article  PubMed  Google Scholar 

  11. Bland, A.R. and Schaefer, A., Different varieties of uncertainty in human decision-making, Front. Neurosci., 2012, vol. 6, p. 85. https://doi.org/10.3389/fnins.2012.00085

    Article  PubMed  PubMed Central  Google Scholar 

  12. Britten, R.A., Davis, L.K., Johnson, A.M., et al., Low (20 cGy) doses of 1 GeV/u 56Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats, Radiat. Res., 2012, vol. 177, pp. 146–151.

    Article  CAS  PubMed  Google Scholar 

  13. Burgess, N., Maguire, E.A., and O’Keefe, J., The human hippocampus and spatial and episodic memory, Neuron, 2002, vol. 35, no. 4, pp. 625–641.

    Article  CAS  PubMed  Google Scholar 

  14. Burke, C.J. and Tobler, P.N., Coding of reward probability and risk by single neurons in animals, Front. Neurosci., 2011, vol. 5, p. 121. https://doi.org/10.3389/fnins.2011.00121

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carlezon, W.A., Jr. and Thomas, M.J., Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis, Neuropharmacology, 2009, vol. 56, suppl. 1, pp. 122–132.

    Article  CAS  PubMed  Google Scholar 

  16. De Maeyer, E., Seif, I., Cases, O., and Gaspar, P., Aggressive behavior and altered amount of brain in mice lacking monoamine oxidase A, in Biology to Society, Grisolia, I.S., Ed., Amsterdam: Elsevier, 1997, pp. 71–78.

    Google Scholar 

  17. Deneve, S., Making decisions with unknown sensory reliability, Front. Neurosci., 2012, vol. 6, p. 75. https://doi.org/10.3389/fnins.2012.00075

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frenois, F., Stinus, L., Di Blasi, F., et al., A specific limbic circuit underlies opiate withdrawal memories, J. Neurosci., 2005, vol. 25, no. 6, pp. 1366–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greengard, P., Allen, P.B., and Nairn, A.C., Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade, Neuron, 1999, vol. 23, no. 3, pp. 435–447.

    Article  CAS  PubMed  Google Scholar 

  20. Grigor’yan, G.A., New simplified model of discriminant teaching of mice, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 3, pp. 418–426.

    Google Scholar 

  21. Grigor’yan, G.A. and Bazyan, A.S., The experimental models of Parkinson’s disease in animals, Usp. Fiziol. Nauk, 2007, vol. 38, no. 4, pp. 80–88.

    Google Scholar 

  22. Gruber, A.J. and McDonald, R.J., Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior, Front. Behav. Neurosci., 2012, vol. 6, p. 50. https://doi.org/10.3389/fnbeh.2012.00050

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hemby, S.E., Jones, G.H., Neill, D.B., and Justice, J.B., Jr., 6-Hydroxydopamine lesions of the medial prefrontal cortex fail to influence cocaine-induced place conditioning, Behav. Brain Res., 1992, vol. 49, no. 2, pp. 225–230.

    Article  CAS  PubMed  Google Scholar 

  24. Higgins, G.A., Nguyen, P., and Sellers, E.M., Morphine place conditioning is differentially affected by CCKA and CCKB receptor antagonists, Brain Res., 1992, vol. 572, nos. 1–2, pp. 208–215.

  25. Ho, S.S., Gonzalez, R.D., Abelson, J.L., and Liberzon, I., Neurocircuits underlying cognition-emotion interaction in a social decision making context, NeuroImage, 2012, vol. 63, no. 2, pp. 843–857.

    Article  PubMed  Google Scholar 

  26. Hoyer, D., Clarke, D.E., Fozard, J.R., et al., International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin), Pharmacol. Rev., 1994, vol. 46, no. 2, pp. 157–203.

    CAS  PubMed  Google Scholar 

  27. Jüngling, K., Seidenbecher, T., Sosulina, L., et al., Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala, Neuron, 2008, vol. 59, no. 2, pp. 298–310.

  28. Kim, J.J., Shih, J.C., Chen, K., et al., Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 11, pp. 5929–5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kulagin, D.A. and Bolodinsky, V.K., Neurochemical aspects of emotional reactivity and motor activity of rats in a new environment, Usp. Fiziol. Nauk, 1986, vol. 17, no. 1, pp. 92–109.

    CAS  PubMed  Google Scholar 

  30. Li, B., Piriz, J., and Mirrione, M., Synaptic potentiation onto habenula neurons in learned helplessness model of depression, Nature, 2011, vol. 470, no. 7335, pp. 535–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lombardo, M.V., Barnes, J.L., Wheelwright, S.J., and Baron-Cohen, S., Self-referential cognition and empathy in autism, PLoS One, 2007, vol. 2, no. 9, p. e883. https://doi.org/10.1371/journal.pone.0000883

    Article  PubMed  PubMed Central  Google Scholar 

  32. Machida, M., Lonart, G., and Britten, R.A., Low (60 cGy) doses of 56Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes, Radiat. Res., 2010, vol. 174, pp. 618–623.

    Article  CAS  PubMed  Google Scholar 

  33. McClusky, L.M., On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context, Nurse Educ. Today, 2012, vol. 32, no. 1, pp. 101–104.

    Article  PubMed  Google Scholar 

  34. McGregor, I.S., Contrasting effects of stress on medial and sulcal prefrontal cortex self-stimulation, Brain Res. Bull., 1991, vol. 27, no. 2, pp. 225–229.

    Article  CAS  PubMed  Google Scholar 

  35. Mink, J.W., The basal ganglia, in Fundamental Neuroscience, Scuire, L.R., Bloom, F.T., McConnell, S.C., Roberts, J.L., Spitzer, N.C., and Zigmond, M.J., Eds., Amsterdam: Elsevier, 2003, pp. 815–839.

    Google Scholar 

  36. Mora, F., Avrith, D.B., and Rolls, E.T., An electrophysiological and behavioral study of self-stimulation in the orbitofrontal cortex of the rhesus monkey, Brain Res. Bull., 1980, vol. 5, no. 2, pp. 111–115.

    Article  CAS  PubMed  Google Scholar 

  37. Morrow, A.L., Porcu, P., Boyd, K.N., and Grant, K.A., Hypothalamic-pituitary-adrenal axis modulation of GABAergic neuroactive steroids influences ethanol sensitivity and drinking behavior, Dialogues Clin. Neurosci., 2006, vol. 8, no. 4, pp. 463–477.

    PubMed  PubMed Central  Google Scholar 

  38. Olds, J. and Milner, P., Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain, J. Comp. Physiol. Psychol., 1954, vol. 47, pp. 419–427.

    Article  CAS  PubMed  Google Scholar 

  39. O’Neill, M. and Schultz, W., Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value, Neuron, 2010, vol. 68, no. 4, pp. 789–800.

    Article  CAS  PubMed  Google Scholar 

  40. Phillips, A.G., Mora, F., and Rolls, E.T., Intracerebral self-administration of amphetamine by rhesus monkeys, Neurosci. Lett., 1981, vol. 24, no. 1, pp. 81–86.

    Article  CAS  PubMed  Google Scholar 

  41. Przybycien-Szymanska, M.M., Gillespie, R.A., and Pak, T.R., 17β-Estradiol is required for the sexually dimorphic effects of repeated binge-pattern alcohol exposure on the HPA axis during adolescence, PLoS One, 2012, vol. 7, no. 2, p. e32263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Heavy particle irradiation, neurochemistry and behavior: thresholds, dose-response curves and recovery of function, Adv. Space Res., 2004, vol. 33, no. 8, pp. 1330–1333.

    Article  CAS  PubMed  Google Scholar 

  43. Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., A longitudinal study of operant responding in rats irradiated when 2 months old, Radiat. Res., 2005, vol. 164, no. 4, pp. 552–555.

    Article  CAS  PubMed  Google Scholar 

  44. Raevski, K.S., Sotnikova, T.D., and Gainetdinov, R.R., Dopaminergic system of the brain: receptor heterogeneity, functional role, pharmacological regulation, Usp. Fiziol. Nauk, 1996, vol. 27, no. 1, pp. 3–29.

    Google Scholar 

  45. Redgrave, P., Modulation of intracranial self-stimulation behaviour by local perfusions of dopamine, noradrenaline, and serotonin within the caudate nucleus and nucleus accumbens, Brain Res., 1978, vol. 155, no. 2, pp. 277–295.

    Article  CAS  PubMed  Google Scholar 

  46. Robinson, J.E., Fish, E.W., Krouse, M.C., et al., Potentiation of brain stimulation reward by morphine: effects of neurokinin-1 receptor antagonism, Psychopharmacology, 2012, vol. 220, no. 1, pp. 215–224.

    Article  CAS  PubMed  Google Scholar 

  47. Roth, R.H. and Elsworth, J.D., Biochemical pharmacology of midbrain dopamine neurons, in Psychopharmacology: The Fourth Generation of Progress, Bloom, F.E. and Kupfer, D.J., Eds., New York: Raven Press, 1995, pp. 227–243.

    Google Scholar 

  48. Roth, R.H., Wolf, M.E., and Deutch, A.Y., Neurochemistry of midbrain dopamine systems, in Psychopharmacology: The Third Generation of Progress, Meltzer, H.Y., Ed., New York: Raven Press, 1987, pp. 81–94.

    Google Scholar 

  49. Schilbach, L., Bzdok, D., Timmermans, B., et al., Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition, PLoS One, 2012, vol. 7, no. 2, p. 30920. https://doi.org/10.1371/journal.pone.0030920

    Article  CAS  Google Scholar 

  50. Shabanov, P.D. and Lebedev, A.A., Involvement of Gaba- and dopaminergic mechanisms of the bed nucleus of the stria terminalis in the reinforcing effects of psychotropic substances mediated via the lateral hypothalamus, Neurosci. Behav. Physiol., 2013, vol. 43, no. 4, pp. 485–491.

    Article  CAS  Google Scholar 

  51. Shabanov, P.D., Lebedev, A.A., Lyubimov, A.V., and Kornilov, V.A., Significance of CRF and dopamine receptors in amygdale for reinforcing effects of opiates and opioids on self-stimulation of lateral hypothalamus in rats, Eksp. Klin. Farmakol., 2011, vol. 74, no. 7, pp. 3–8.

    PubMed  Google Scholar 

  52. Sharot, T., Shiner, T., Brown, A.C., et al., Dopamine enhances expectation of pleasure in humans, Curr. Biol., 2009, vol. 19, no. 24, pp. 2077–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shtemberg, A.S., The combined effect of antiorthostatic hypodynamia and gamma irradiation on the higher nervous activity of rats, Aviakosm. Ekol. Med., 1992, vol. 26, no. 4, pp. 64–67.

    CAS  Google Scholar 

  54. Shtemberg, A.S., Lebedeva-Georgievskaya, K.B., Matveeva, M.I., et al., Effect of space flight factors simulated in ground-based experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats, Biol. Bull. (Moscow), 2014, vol. 41, no. 2, pp. 161–167.

    Article  Google Scholar 

  55. Shukitt-Hale, B., Casadesus, G., McEwen, J.J., et al., Spatial learning and memory deficits induced by exposure to iron-56-particle radiation, Radiat. Res., 2000, vol. 154, no. 1, pp. 28–33.

    Article  CAS  PubMed  Google Scholar 

  56. Shumake, J., Ilango, A., Scheich, H., et al., Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area, J. Neurosci., 2010, vol. 30, no. 17, pp. 5876–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith, K.S., Berridge, K.C., and Aldridge, J.W., Disentangling pleasure from incentive salience and learning signals in brain reward circuitry, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 27, pp. 255–264.

    Article  Google Scholar 

  58. Stella, F., Cerasti, E., Si, B., et al., Self-organization of multiple spatial and context memories in the hippocampus, Neurosci. Biobehav. Rev., 2012, vol. 36, no. 7, pp. 1609–1625.

    Article  PubMed  Google Scholar 

  59. Thomas, K.L. and Everitt, B.J., Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: a cellular imaging study with gamma protein kinase C expression, J. Neurosci., 2001, vol. 21, no. 7, pp. 2526–2535.

    Article  CAS  PubMed  Google Scholar 

  60. Thornton, E.W., Murray, M., Connors-Eckenrode, T., and Haun, F., Dissociation of behavioral changes in rats resulting from lesions of the habenula versus fasciculus retroflexus and their possible anatomical substrates, Behav. Neurosci., 1994, vol. 108, no. 6, pp. 1150–1162.

    Article  CAS  PubMed  Google Scholar 

  61. Ushakov, I.B., Shtemberg, A.S., and Shafirkin, A.V., Reaktivnost’ i rezistentnost’ organizma mlekopitayushchikh (Reactivity and Resistance of the Mammal Organism), Moscow: Nauka, 2007.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 17-29-01002 ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Ushakov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, I.B., Shtemberg, A.S., Krasavin, E.A. et al. Effects of Space Radiation and Combined Impact of Radiation and Other Spaceflight Factors on CNS Functions in Model Experiments on Animals. Biol Bull Rev 9, 93–104 (2019). https://doi.org/10.1134/S2079086419020087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419020087

Navigation