Skip to main content
Log in

Hybrid speciation in mammals: Illusion or reality?

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

In the review, the known examples of presumable hybrid speciation in mammals are analyzed. It is often not easy to clearly differentiate hybrid speciation and derivatives of other evolutionary scenarios. Nevertheless, the reality of hybrid speciation, both allopolyploid (AHS) and homoploid (HHS), within this class has been demonstrated. Characteristically, the examples considered include only one case of AHS along with a multitude of HHS events. Speciation via polyploidy is unlikely in mammals because of the impairment of the gene dosage compensation mechanism. It is assumed that HHS can occur, most probably in groups of mammals with hemochorial placentation. Good concordance between specific natural situations and theoretical predictions is shown; species of assumed hybrid origin are usually morphologically aberrant (within their own groups), their geographical ranges are relatively small, and they are spatially separated from parental forms and often occupy edge habitats. Recognition of the reality of such kind of speciation in mammals makes it obvious that it is not only species with a narrow range, occupying periphery ecological niches, often with extreme environmental conditions, that need to be taken under protection, but also stabilized hybrid populations with a unique gene pool and a distinctive phenotypic appearance. Undoubtedly, these populations can be regarded as interesting evolutionary models and therefore definitely deserve to be protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, M.L., Natural Hybridization and Evolution, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  • Arnold, M.L., Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell, 2004, vol. 16, no. 3, pp. 562–570.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold, M.L., Evolution through Genetic Exchange, Oxford: Oxford Univ. Press, 2006.

    Google Scholar 

  • Bacquet, C., Imamura, T., Gonzalez, C.A., Conejeros, I., Kausel, G., et al., Epigenetic processes in a tetraploid mammal, Mamm. Genome, 2008, vol. 19, no. 6, pp. 439–447.

    CAS  PubMed  Google Scholar 

  • Baker, R.J. and Bradley, R.D., Speciation in mammals and the genetic species concept, J. Mammal., 2006, vol. 87, no. 4, pp. 643–662.

    PubMed Central  PubMed  Google Scholar 

  • Barton, N.H., The role of hybridization in evolution, Mol. Ecol., 2001, vol. 10, no. 3, pp. 551–568.

    CAS  PubMed  Google Scholar 

  • Barton, N.H. and Hewitt, G.M., Analysis of hybrid zones, Annu. Rev. Ecol. Syst., 1985, vol. 16, pp. 113–148.

    Google Scholar 

  • Berman, S.L., A desert octodontid rodent, Tympanoctomys barrerae, uses modified hairs for stripping epidermal tissue from leaves of halophytic plants, J. Morphol., 2003, vol. 257, no. 1, pp. 53–61.

    PubMed  Google Scholar 

  • Bonhomme, F., Miyashita, N., Boursot, P., Catalan, J., and Moriwaki, K., Genetic variation and polyphyletic origin in Japanese Mus musculus, Heredity, 1989, vol. 63, no. 3, pp. 299–308.

    PubMed  Google Scholar 

  • Buerkle, C.A. and Rieseberg, L.H., The rate of genome stabilization in homoploid hybrid species, Evolution, 2008, vol. 62, no. 2, pp. 266–275.

    PubMed Central  PubMed  Google Scholar 

  • Buerkle, C.A., Morris, R.J., Asmussen, M.A., and Rieseberg, L.H., The likelihood of homoploid hybrid speciation, Heredity, 2000, vol. 84, no. 4, pp. 441–451.

    PubMed  Google Scholar 

  • Burke, J.M. and Arnold, M.L., Genetics and the fitness of hybrids, Annu. Rev. Genet., 2001, vol. 35, pp. 31–52.

    CAS  PubMed  Google Scholar 

  • Burrell, A.S., Jolly, C.J., Tosi, A.J., and Disotell, T.R., Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini), Mol. Phylogenet. Evol., 2009, vol. 51, no. 2, pp. 340–348.

    CAS  PubMed  Google Scholar 

  • Chakraborty, D., Ramakrishnan, U., Panor, J., Mishra, C., and Sinha, A., Phylogenetic relationships and morphometric affinities of the Arunachal macaque Macaca munzala, a newly described primate from Arunachal Pradesh, northeastern India, Mol. Phylogenet. Evol., 2007, vol. 44, no. 2, pp. 838–849.

    CAS  PubMed  Google Scholar 

  • Coimbra-Filho, A.F., Mittermeier, R.A., Rylands, A.B., Mendes, S.L., Kierulff, M.C.M., de Pinto, L.P.S., The taxonomic status of Wied’s black-tufted-ear marmoset, Callithrix kuhlii (Callitrichidae, Primates), Primate Conserv., 2006, vol. 21, pp. 1–24.

    Google Scholar 

  • Collen, B., Purvis, A., and Gittleman, J.L., Biological correlates of description date in carnivores and primates, Global Ecol. Biogeogr., 2004, vol. 13, no. 5, pp. 459–467.

    Google Scholar 

  • Coyne, J.A. and Orr, H.A., Speciation, Sunderland, MA: Sinauer, 2004.

    Google Scholar 

  • Darevskii, I.S., Speciation of animals by hybridization, Metody issledovaniya v ekologii i etologii (Assessment Methods Applied in Ecology and Ethology), Zykova, L.Yu. and Panov, E.N., Eds., Pushchino: Nauchn. Tsentr. Biol. Inst., Akad. Nauk SSSR, 1986, pp. 34–75.

    Google Scholar 

  • Darlington, C.D., Polyploidy in animals, Nature, 1953, vol. 171, no. 4344, pp. 191–194.

    CAS  PubMed  Google Scholar 

  • Davenport, T.R.B., Stanley, W.T., Sargis, E.J., De Luca, D.W., Mpunga, N.E., Machaga, S.J., and Olson, L.E., A new genus of African monkey, Rungwecebus: morphology, ecology, and molecular phylogenetics, Science, 2006, vol. 312, pp. 1378–1381.

    CAS  PubMed  Google Scholar 

  • Dobzhansky, T., Genetics and the Origin of Species, New York: Columbia Univ. Press, 1937.

    Google Scholar 

  • Duenez-Guzman, E.A., Mavarez, J., Vose, M.D., and Gavrilets, S., Case studies and mathematical models of ecological speciation. 4. Hybrid speciation in butterflies in a jungle, Evolution, 2009, vol. 63, no. 10, pp. 2611–2626.

    PubMed  Google Scholar 

  • Elliot, M.G. and Crespi, B.J., Placental invasiveness mediates the evolution of hybrid inviability in mammals, Am. Nat., 2006, vol. 168, no. 1, pp. 114–120.

    PubMed  Google Scholar 

  • Fitzpatrick, B.M., Rates of evolution of hybrid inviability in birds and mammals, Evolution, 2004, vol. 58, no. 8, pp. 1865–1870.

    PubMed  Google Scholar 

  • Froehlich, J.W. and Supriatna, J., Secondary intergradation between Macaca maurus and M. tonkeana in South Sulawesi, and the species status of M. togeanus, Evolution and Ecology of Macaque Societies, Fa, J.E. and Lindburg, D.G., Eds., Cambridge: Cambridge Univ. Press, 1996, pp. 43–70.

    Google Scholar 

  • Froehlich, J.W., Supriatna, J., Hart, V., Akbar, S., and Babo, R., The balan of Balantak: a possible new species of macaque in Central Sulawesi, Trop. Biodiversity, 1998, vol. 5, no. 3, pp. 167–194.

    Google Scholar 

  • Galbreath, G.J., Mordacq, J.C., and Weiler, F.H., Genetically solving a zoological mystery: was the kouprey (Bos sauveli) a feral hybrid? J. Zool., 2006, vol. 270, no. 4, pp. 561–564.

    Google Scholar 

  • Gallardo, M.H., González, C.A., and Cebrián, I., Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae), Genomics, 2006, vol. 88, no. 2, pp. 214–221.

    CAS  PubMed  Google Scholar 

  • Gallardo, M.H., Bickham, J.W., Honeycutt, R.L., Ojeda, R.A., and Köhler, N., Discovery of tetraploidy in a mammal, Nature, 1999, vol. 401, no. 6751, p. 341.

    CAS  PubMed  Google Scholar 

  • Gallardo, M.H., Bickham, J.W., Kausel, G., Köhler, N., and Honeycutt, R.L., Gradual and quantum genome size shifts in the hystricognath rodents, J. Evol. Biol., 2003, vol. 16, no. 1, pp. 163–169.

    CAS  PubMed  Google Scholar 

  • Gallardo, M.H., Garrido, O., Bahamonde, R., and González, M., Gametogenesis and nucleotypic effects in the tetraploid red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae), Biol. Res., 2004a, vol. 37, no. 4, pp. 765–775.

    Google Scholar 

  • Gallardo, M.H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J., Köhler, N., and Ojeda, R., Whole-genome duplications in South American desert rodents (Octodontidae), Biol. J. Linn. Soc., 2004b, vol. 82, no. 4, pp. 443–451.

    Google Scholar 

  • Gallardo, M.H., Ojeda, R.A., González, C.A., and Ríos, C.A., The Octodontidae revisited, Univ. Calif. Publ. Zool., 2007, vol. 134, pp. 695–720.

    Google Scholar 

  • Gianonni, S.M., Borghi, C.E., and Ojeda, R.A., Feeding behavior of Tympanoctomys barrerae, a rodent specialized in consuming Atriplex leaves, J. Arid Environ., 2000, vol. 46, no. 2, pp. 117–121.

    Google Scholar 

  • Gilbert, C.C., Stanley, W.T., Olson, L.E., Davenport, T.R.B., and Sargis, E.J., Morphological systematics of the kipunji (Rungwecebus kipunji) and the ontogenetic development of phylogenetically informative characters in the Papionini, J. Hum. Evol., 2011, vol. 60, no. 6, pp. 731–735.

    PubMed  Google Scholar 

  • Gilbert, L.E., Adaptive novelty through introgression in Heliconius wing patterns: evidence for shared genetic “tool box” from synthetic hybrid zones and a theory of diversification, Ecology and Evolution of Taking Flight: Butterflies as a Model System, Boggs, C.L., Ward, B.W., and Ehrlich, P.R., Eds., Chicago: Univ. Chicago Press, 2003, pp. 281–318.

    Google Scholar 

  • Gompert, Z., Fordyce, J.A., Forister, M., Shapiro, A.M., and Nice, C.C., Homoploid hybrid speciation in an extreme habitat, Science, 2006, vol. 314, pp. 1923–1925.

    CAS  PubMed  Google Scholar 

  • Goto, T. and Monk, M., Regulation of X-chromosome inactivation in development in mice and humans, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 362–378.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grant, P.R. and Grant, B.R., How and Why Species Multiply: The Radiation of Darwin’s Finches, Princeton: Princeton Univ. Press, 2008.

    Google Scholar 

  • Gross, B.L. and Rieseberg, L.H., The ecological genetics of homoploid hybrid speciation, J. Hered., 2005, vol. 96, no. 3, pp. 241–252.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groves, C.P., Primate Taxonomy, Washington, DC: Smithson. Instit. Press, 2001.

    Google Scholar 

  • Haig, S.M. and Allendorf, F.W., Hybrids and policy, in The Endangered Species Act at Thirty, Vol. 2: Conserving Biodiversity in Human-dominated Landscapes, Scott, J.M., Goble, D.D., and Davis, F., Eds., Washington, DC: Island Press, 2006, pp. 150–163.

    Google Scholar 

  • Harrison, R.G., Hybrid zones: windows on evolutionary processes, in Oxford Surveys in Evolutionary Biology, Futuyma, D. and Antonovics, J., Eds., Oxford: Oxford Univ. Press, 1990, pp. 69–128.

    Google Scholar 

  • Hassanin, A. and Ropiquet, A., Resolving a zoological mystery: the Kouprey is a real species, Proc. R. Soc. Lond. B, 2007, vol. 274, no. 1627, pp. 2849–2855.

    CAS  Google Scholar 

  • Hershkovitz, P., Living New World Monkeys, Part 1: Platyrrhini (with an Introduction to Primates), Chicago: Univ. Chicago Press, 1977.

    Google Scholar 

  • Holdt, B.M., Pollinger, J.P., Earl, D.A., Knowles, J.C., Boyko, A.R., et al., A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids, Genome Res., 2011, vol. 21, no. 8, pp. 1294–1305.

    Google Scholar 

  • Jones J.K., Jr., Bradley, R.D., and Baker, R.J., Hybrid pocket gophers and some thoughts on the relationship of natural hybrids to the rules of nomenclature and the Endangered Species Act, J. Mammal., 1995, vol. 76, no. 1, pp. 43–49.

    Google Scholar 

  • Jones, T., Ehardt, C.L., Butynski, T.M., Davenport, T.R.B., Mpunga, N.E., Machaga, S.J., and De Luca, D.W., The highland mangabey Lophocebus kipunji: a new species of African monkey, Science, 2005, vol. 308, pp. 1161–1164.

    CAS  PubMed  Google Scholar 

  • Karanth, K., Primate numts and reticulate evolution of capped and golden leaf monkeys (Primates: Colobinae), J. Biosci., 2008, vol. 33, no. 5, pp. 761–770.

    CAS  PubMed  Google Scholar 

  • Karanth, K., Singh, L., Collura, R., and Stewart, C.-B., Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae), Mol. Phylogenet. Evol., 2008, vol. 46, no. 2, pp. 683–694.

    CAS  PubMed  Google Scholar 

  • Kartavtseva, I.V., Problems of caryosystematics and phylogeny of rodents of Palaearctic, Extended Abstract of Doctoral (Biol.) Dissertation, Vladivostok: Biol.-Pochv. Inst., Dal’nevost. Otd. Ross. Akad. Nauk, 2002.

    Google Scholar 

  • Kays, R., Curtis, A., and Kirchmann, J.J., Rapid adaptive evolution of northeastern coyotes via hybridization with wolves, Biol. Lett., 2010, vol. 6, no. 1, pp. 89–93.

    PubMed Central  PubMed  Google Scholar 

  • Landry, S.O., What constitutes a proper description? Science, 2005, vol. 309, pp. 2164.

    Google Scholar 

  • Larsen, P.A., Marchán-Rivadeneira, M.R., and Baker, R.J., Natural hybridization generates mammalian lineage with species characteristics, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 25, pp. 11447–11452.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavrenchenko, L.A., Possible directions of evolution and resettlement, in Domovaya mysh. Proiskhozhdenie, rasprostranenie, sistematika, povedenie (House Mouse: Origin, Distribution, Systematics, and Behavior), Kotenkova, E.V. and Bulatova, N.Sh., Eds., Moscow: Nauka, 1994, pp. 51–56.

    Google Scholar 

  • Lavrenchenko, L.A., Mammals of Ethiopian plateau as a model for evolutionary studies, in Sovremennye problemy biologicheskoi evolyutsii (Current Problems of Biological Evolution), Moscow: GDM, 2008, pp. 149–184.

    Google Scholar 

  • Lavrenchenko, L.A., Verheyen, W.N., Verheyen, E., Hulselmans, J., and Leirs, H., Morphometric and genetic study of Ethiopian Lophuromys flavopunctatus Thomas, 1888 species complex with description of three new 70-chromosomal species (Muridae-Rodentia), Bull. Inst. R. Sci. Nat. Belg., 2007, vol. 77, pp. 77–117.

    Google Scholar 

  • Li, J., Han, K., Xing, J., Kim, H.-S., Rogers, J., Ryder, O.A., et al., Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements, Gene, 2009, vol. 448, no. 2, pp. 242–249.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liedigk, R., Van Ngoc Thinh, Nadler, T., Walter, L., and Roos, C., Evolutionary history and phylogenetic position of the Indochinese grey langur (Trachypithecus crepusculus), Vietn. J. Primatol., 2009, vol. 1, no. 3, pp. 1–8.

    Google Scholar 

  • Lotsy, J.P., Evolution by Means of Hybridization, The Hague: Martinus Nijhoff, 1916.

    Google Scholar 

  • Lowe, C., Making the monkey: how the Togean macaque went from “new form” to “endemic species” in Indonesians’ conservation biology, Cult. Anthropol., 2004, vol. 19, no. 4, pp. 491–516.

    Google Scholar 

  • Ma, X.-F. and Gustafson, J.P., Genome evolution of allopolyploids: a process of cytological and genetic diploidization, Cytogenet. Genome Res., 2005, vol. 109, nos. 1–3, pp. 236–249.

    CAS  PubMed  Google Scholar 

  • Mable, B.K., “Why polyploidy is rare in animals than in plants”: myths and mechanisms, Biol. J. Linn. Soc., 2004, vol. 82, no. 4, pp. 453–466.

    Google Scholar 

  • Mallet, J., Hybrid speciation, Nature, 2007, vol. 446, no. 7133, pp. 279–283.

    CAS  PubMed  Google Scholar 

  • Mares, M.A., Braun, J.K., Barquez, R.M., and Diaz, M.M., Two new genera and species of halophytic desert mammals from isolated salt flats in Argentina, Occas. Pap. Natl. Mus. Tex. Tech. Univ., 2000, vol. 203, pp. 1–27.

    Google Scholar 

  • Mares, M.A., Ojeda, R.A., Borghi, C.E., Giannoni, S.M., Diaz, G.B., and Braun, J.K., How desert rodents overcome halophytic plant defenses, Bioscience, 1997, vol. 47, no. 10, pp. 699–704.

    Google Scholar 

  • Marshall, J.T. and Sage, R.D., Taxonomy of the house mouse, Symp. Zool. Soc. Lond., 1981, vol. 47, pp. 15–25.

    Google Scholar 

  • Matthey, R., A propos de la polyploïdie animale: réponse à un article de C.D. Darlington, Rev. Suisse Zool., 1953, vol. 60, no. 3, pp. 466–471.

    Google Scholar 

  • Mavarez, J. and Linares, M., Homoploid hybrid speciation in animals, Mol. Ecol., 2008, vol. 17, no. 19, pp. 4181–4185.

    PubMed  Google Scholar 

  • Meireles, C.M., Czelusniak, J., Sampaio, I., Schneider, H., Ferrari, S.F., et al., Electrophoretic polymorphisms and their taxonomic implications in Callitrichini (Primates, Platyrrhini), Biochem. Genet., 1998, vol. 36, no. 7/8, pp. 229–244.

    CAS  PubMed  Google Scholar 

  • Milishnikov, A.N., Lavrenchenko, L.A., and Lebedev, V.S., Origin of the house mice (superspecies complex Mus musculus s.l.) from the Transcaucasia region: a new look at dispersal routes and evolution, Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1011–1026.

    CAS  Google Scholar 

  • Moses, M.J. and Yerganian, G., Desoxypentose nucleic acid (DNA) content and cytotaxonomy of several Cricetinae (hamster), Genetics, 1952, vol. 37, pp. 607–608.

    Google Scholar 

  • Nagamine, C.M., Shiroishi, T., Miyashita, N., Tsuchiya, K., Ikeda, H., et al., Distribution of the Molossinus allele of Sry, the testis-determining gene, in wild mice, Mol. Biol. Evol., 1994, vol. 11, no. 6, pp. 864–874.

    CAS  PubMed  Google Scholar 

  • Nolte, A.W. and Tautz, D., Understanding the onset of hybrid speciation, TIG, 2010, vol. 26, no. 2, pp. 54–58.

    CAS  PubMed  Google Scholar 

  • Nunome, M., Ishimori, C., Aplin, K.P., Tsuchiya, K., Yonekawa, H., Moriwaki, K., and Suzuki, H., Detection of recombinant haplotypes in wild mice (Mus musculus) provides new insights into the origin of Japanese mice, Mol. Ecol., 2010, vol. 19, no. 12, pp. 2474–2489.

    CAS  PubMed  Google Scholar 

  • O’Brien, S.J. and Mayr, E., Bureaucratic mischief: recognizing endangered species and subspecies, Science, 1991, vol. 251, pp. 1187–1188.

    PubMed  Google Scholar 

  • Orr, H.A., “Why polyploidy is rarer in animals than in plants” revisited, Am. Nat., 1990, vol. 136, no. 6, pp. 759–770.

    Google Scholar 

  • Osterholz, M., Walter, L., and Roos, C., Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups, BMC Evol. Biol., 2008, vol. 8, no. 1, pp. 1–12.

    Google Scholar 

  • Otto, S.P. and Whitton, J., Polyploid incidence and evolution, Annu. Rev. Genet., 2000, vol. 34, pp. 401–437.

    CAS  PubMed  Google Scholar 

  • Pagel, M.D., May, R.M., and Collie, A.R., Ecological aspects of the geographic distribution and diversity of mammalian species, Am. Nat., 1991, vol. 137, no. 6, pp. 791–815.

    Google Scholar 

  • Patterson, B.D., Accumulating knowledge on the dimensions of biodiversity: systematic perspectives on neotropical mammals, Biodiversity Lett., 1994, vol. 2, pp. 79–86.

    Google Scholar 

  • Prager, E.M. and Wilson, A.C., Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution, Proc. Natl. Acad. Sci. U.S.A., 1975, vol. 72, no. 1, pp. 200–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reeder, D.M., Helgen, K.M., and Wilson, D.E., Global trends and biases in new mammal species discoveries, Occas. Pap. Natl. Mus. Tex. Tech. Univ., 2007, no. 269, pp. 1–36.

    Google Scholar 

  • Rieseberg, L.H. and Burke, J.M., The biological reality of species: gene flow, selection, and collective evolution, Taxon, 2001, vol. 50, pp. 47–67.

    Google Scholar 

  • Rieseberg, L.H., Archer, M.A., and Wayne, R.K., Transgressive segregation, adaptation, and speciation, Heredity, 1999, vol. 83, no. 4, pp. 363–372.

    PubMed  Google Scholar 

  • Roberts, T., Davenport, T.R.B., Hildebrandt, K.B.P., Jones, T., Stanley, W.T., Sargis, E.J., and Olson, L.E., The biogeography of introgression in the critically endangered African monkey Rungwecebus kipunji, Biol. Lett., 2010, vol. 6, no. 2, pp. 233–237.

    PubMed Central  PubMed  Google Scholar 

  • Romanenko, S.A., Perelman, P.L., Serdukova, N.A., Trifonov, V.A., Biltueva, L.S., et al., Reciprocal chromosome painting between three laboratory rodent species, Mamm. Genome, 2006, vol. 17, no. 12, pp. 1183–1192.

    PubMed  Google Scholar 

  • Roos, C., Zinner, D., Kubatko, L.S., Schwarz, C., Yang, M., et al., Nuclear versus mitochondrial DNA: Evidence for hybridization in colobine monkeys, BMC Evol. Biol., 2011, vol. 11, no. 1, pp. 77–89.

    PubMed Central  PubMed  Google Scholar 

  • Sachs, L., Polyploid evolution and mammalian chromosomes, Heredity, 1952, vol. 6, pp. 357–364.

    Google Scholar 

  • Schliewen, U.K. and Klee, B., Reticulate sympatric speciation in Cameroonian Crater Lake cichlids, Front. Zool., 2004, vol. 1, no. 5, pp. 1–12.

    Google Scholar 

  • Seehausen, O., Hybridization and adaptive radiation, TREE, 2004, vol. 19, no. 4, pp. 198–207.

    PubMed  Google Scholar 

  • Sherudilo, A.I. and Semeshin, V.F., Comparison of chromosomal groups and DNA quantity per nucleus in some Palaearctic hamsters, in Mlekopitayushchie: evolyutsiya, kariologiya, sistematika, faunistika (Evolution, Caryology, Systematics, and Fauna of Mammals), Novosibirsk: Nauka, 1969.

    Google Scholar 

  • Singleton, M., McNulty, K.P., Frost, S.R., Soderberg, J., and Guthrie, E.H., Bringing up baby: Developmental simulation of the adult cranial morphology of Rungwecebus kipunji, Anat. Rec., 2010, vol. 293, no. 3, pp. 388–401.

    Google Scholar 

  • Sinha, A., Datta, A., Madhusudan, M.D., and Mishra, C., Macaca munzala: a new species from western Arunachal Pradesh, northeastern India, Int. J. Primatol., 2005, vol. 26, no. 4, pp. 977–989.

    Google Scholar 

  • Smith, T.B., Wayne, R.K., Girman, D., and Bruford, M.W., Evaluating the divergence-with-gene-flow model in natural populations: the importance of ecotones in rainforest speciation, Tropical Rainforests: Past, Present, and Future, Bermingham, E., Dick, C.W., and Moritz, C., Eds., Chicago: Univ. Chicago Press, 2005, pp. 148–165.

    Google Scholar 

  • Suárez-Villota, E.Y., Vargas, R.A., Marchant, C.L., Torres, J.E., Köhler, N., et al., Distribution of repetitive DNAs and the hybrid origin of the red vizcacha rat (Octodontidae), Genome, 2012, vol. 55, no. 2, pp. 105–117.

    PubMed  Google Scholar 

  • Svartman, M., Stone, G., and Stanyon, R., Molecular cytogenetics discards polyploidy in mammals, Genomics, 2005, vol. 85, no. 4, pp. 425–430.

    CAS  PubMed  Google Scholar 

  • Tagliaro, C.H., Schneider, M.P.C., Schneider, H., Sampaio, I.C., and Stanhope, M.J., Marmoset phylogenetics, conservation perspectives, and evolution of the mtDNA control region, Mol. Biol. Evol., 1997, vol. 14, no. 6, pp. 674–684.

    CAS  PubMed  Google Scholar 

  • Templeton, A.R., Mechanisms of speciation—a population genetic approach, Annu. Rev. Ecol. Syst., 1981, vol. 28, pp. 593–619.

    Google Scholar 

  • Terashima, M., Furusawa, S., Hanzawa, N., Tsuchiya, K., Suyanto, A., et al., Phylogeographic origin of Hokkaido house mice (Mus musculus) as indicated by genetic markers with maternal, paternal and biparental inheritance, Heredity, 2006, vol. 96, no. 2, pp. 128–138.

    CAS  PubMed  Google Scholar 

  • Tosi, A.J., Morales, J.C., and Melnick, D.J., Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history, Mol. Phylogenet. Evol., 2000, vol. 17, no. 2, pp. 133–144.

    CAS  PubMed  Google Scholar 

  • Tosi, A.J., Morales, J.C., and Melnick, D.J., Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys, Evolution, 2003, vol. 57, no. 6, pp. 1419–1435.

    CAS  PubMed  Google Scholar 

  • Verkaar, E.L., Nijman, I.J., Beeke, M., Hanekamp, E., and Lenstra, J.A., Maternal and paternal lineages in cross-breeding bovine species. Has wisent a hybrid origin? Mol. Biol. Evol., 2004, vol. 21, no. 7, pp. 1165–1170.

    CAS  PubMed  Google Scholar 

  • Wayne, R.K. and Jenks, S., Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf, Canis rufus, Nature, 1991, vol. 351, pp. 565–568.

    CAS  Google Scholar 

  • Wilson, P.J., Grewal, S., Lawford, I.D., Heal, J.N.M., Granacki, A.G., Pennock, D., et al., DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf, Can. J. Zool., 2000, vol. 78, pp. 2156–2166.

    Google Scholar 

  • Wilson, A.C., Maxson, L.R., and Sarich, V.M., Two types of molecular evolution: evidence from studies of interspecific hybridization, Proc. Natl. Acad. Sci. U.S.A., 1974, vol. 71, no. 7, pp. 2843–2847.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson, D.E. and Reeder, D.M., Mammal Species of the World, a Taxonomic and Geographic Reference, Baltimore: Johns Hopkins Univ. Press, 2005, 3d ed.

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Osamu, G., Miyashita, N., Matsushima, Y., et al., Hybrid origin of Japanese mice Mus musculus molossinus: evidence from restriction analysis of mitochondrial DNA, Mol. Biol. Evol., 1988, vol. 5, no. 1, pp. 63–78.

    CAS  PubMed  Google Scholar 

  • Zinner, D., Arnold, M.L., and Roos, C., Is the new primate genus Rungwecebus a baboon? PLoS One, 2009, vol. 4, no. 3, pp. 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Lavrenchenko.

Additional information

Original Russian Text © L.A. Lavrenchenko, 2013, published in Zhurnal Obshchei Biologii, 2013, Vol. 74, No. 4, pp. 253–267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrenchenko, L.A. Hybrid speciation in mammals: Illusion or reality?. Biol Bull Rev 4, 198–209 (2014). https://doi.org/10.1134/S2079086414030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086414030050

Keywords

Navigation