Skip to main content
Log in

Prospects for the Use of Genome-Editing Technology to Correct Neurodegenerative Diseases

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The review analyzes the results of modern studies that involve gene therapy methods for the correction of neurodegenerative diseases. Approaches based on gene-editing technologies and their prospective use in medicine are considered. There may be limitations to the use of the genome-editing tools in the treatment of these pathologies due to features of the pathogenesis of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bannikov, A.V. and Lavrov, A.V., CRISPR/CAS9, the king of genome editing tools, Mol. Biol. (Moscow), 2017, vol. 51, no. 4, pp. 514–525.

    Article  CAS  Google Scholar 

  2. Baranov, V.S., Molecular medicine: molecular diagnostics, preventive medicine, and gene therapy, Mol. Biol. (Moscow), 2000, vol. 34, no. 4, pp. 590–600.

    Article  CAS  Google Scholar 

  3. Vetchinova, A.S., Illarioshkin, S.N., Novosadova, E.V., et al., CRISPR/CAS9 artificial nuclease system as a tool for studying monogenic forms of Parkinson’s disease, Sib. Med. Obozr., 2017, no. 4, pp. 53–58.

  4. Vetchinova, A.S., Konovalova, E.V., Volchkov, P.Yu., et al., Genome editing on a cellular model of the genetic form of Parkinson’s disease, Geny Kletki, 2016, vol. 9, no. 2, pp. 114–118.

    Google Scholar 

  5. Vetchinova, A.S., Konovalova, E.V., Lunev, E.A., and Illarioshkin, S.N., Genome technology editing and its possible use in cell neuroscience, Ann. Nevrol., 2015, vol. 9, no. 4, pp. 59–64.

    Google Scholar 

  6. Malakhova, A.A., Sorokin, M.A., Sorokina, A.E., et al., Using genome editing techniques to create isogenic cell lines modeling the Huntington’s disease in vitro, Geny Kletki, 2016, vol. 11, no. 2, pp. 106–113.

    Google Scholar 

  7. Smirnov, A.V., Yunusova, A.M., Lukyanchikova, V.A., and Battulin, N.R., CRISPR/Cas9, a universal tool for genomic engineering, Russ. J. Genet.: Appl. Res., 2017, vol. 7, no. 4, pp. 440–458.

    Article  CAS  Google Scholar 

  8. An, M.C., O’Brien, R.N., Zhang, N., et al., Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system, PLoS Curr., 2014, vol. 6. https://doi.org/10.1371/currents.hd.0242d2e7ad7222-5efa72f6964589369a

  9. Calatayud, C., Carola, G., Consiglio, A., and Raya, A., Modeling the genetic complexity of Parkinson’s disease by targeted genome edition in iPS cells, Curr. Opin. Genet. Dev., 2017, vol. 46, pp. 123–131.

    Article  CAS  PubMed  Google Scholar 

  10. Cermak, T., Doyle, E.L., Christian, M., et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res., 2011, vol. 39. e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, W., Kim, E., Yum, S.Y., et al., Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells, Prion, 2015, vol. 9, pp. 278–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chugunova, A.A., Dontsova, O.A., and Sergiev, P.V., Methods of genome engineering: a new era of molecular biology, Biochemistry (Moscow), 2016, vol. 81, pp. 662–677.

    CAS  PubMed  Google Scholar 

  13. Doudna, J.A. and Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, 2014, vol. 346, p. 1258096.

    Article  CAS  PubMed  Google Scholar 

  14. Ertekin-Taner, N., Genetics of Alzheimer’s disease: a centennial review, Neurol. Clin., 2007, vol. 25, pp. 611–667.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng, W., Liu, H.-K., and Kawauchi, D., CRISPR-engeneered genome editing for the next generation of neurological disease modeling, Progr. Neuropsychopharmacol. Biol. Psychiatry, 2018, vol. 81, pp. 459–467.

    Article  CAS  Google Scholar 

  16. Fink, K.D., Deng, P., Gutierrez, J., et al., Allele-specific reduction of the mutant Huntington allele using transcription activator-like effectors in human Huntington’s disease fibroblasts, Cell Transpl., 2016, vol. 25, pp. 677–686.

    Article  Google Scholar 

  17. Fong, H., Wang, C., Knoferle, J., et al., Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells, Stem Cell Rep., 2013, vol. 1, pp. 226–234.

    Article  CAS  Google Scholar 

  18. Gyorgy, B., Ingelsson, M., Loov, C., et al., CRISPR-Cas9 mediated gene editing in a monogenic form of Alzheimer’s disease, Mol. Ther., 2016, vol. 24, pp. S226–S227.

    Article  Google Scholar 

  19. György, B., Lööv, C., Zaborowski, M.P., et al., CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease, Mol. Ther. Nucl. Acids, 2018, vol. 11, pp. 429–440.

  20. Hallmann, A.-L., Araúzo-Bravo, M.J., Mavrommatis, L., et al., Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein, Sci. Rep., 2017, vol. 7, p. 42991.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hsu, P.D., Lander, E.S., and Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering, Cell, 2014, vol. 157, pp. 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeon, Y., Choi, Y.H., Jang, Y., et al., Direct observation of DNA target searching and cleavage by CRISPR-Cas12a, Nat. Commun., 2018, vol. 9, p. 2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jo, Y.I., Kim, H., and Ramakrishna, S., Recent developments and clinical studies utilizing engineered zinc finger technology, Cell. Mol. Life Sci., 2015, vol. 72, pp. 3819–3830.

    Article  CAS  PubMed  Google Scholar 

  24. Kavli Prize in Nanoscience 2018. http://kavliprize.org/sites/default/files/%25nid%25/prize_overvi-ew_attachemnts/TKP%202018%20Nanoscience_citation.pdf.

  25. Kim, Y.G., Cha, J., and Chandrasegaran, S., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. King, A., A model challenge, Nature, 2018, vol. 559, pp. S13–S15.

    Article  CAS  PubMed  Google Scholar 

  27. Klein, C. and Westenberger, A., Genetics of Parkinson’s disease, Cold Spring Harbor Perspect. Med., 2012, vol. 2, p. a008888.

    Article  Google Scholar 

  28. Kolli, N., Lu, M., Maiti, P., et al., Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases, Neurochem. Int., 2018, vol. 112, pp. 187–196.

    Article  CAS  PubMed  Google Scholar 

  29. Komor, A.C., Kim, Y.B., Packer, M.S., et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 2016, vol. 533, pp. 420–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lao, Y.H., Li, M., Gao, M.A., et al., HPV oncogene manipulation using nonvirally delivered CRISPR/Cas9 or Natronobacterium gregoryi argonaute, Adv. Sci., 2018, vol. 5, p. 1700540.

    Article  CAS  Google Scholar 

  31. Leone, P., Shera, D., McPhee, S.W., et al., Long-term follow-up after gene therapy for canavan disease, Sci. Transl. Med., 2012, vol. 4, p. 165ra163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, X., Wang, Y., Liu, Y., et al., Base editing with a Cpf1-cytidine deaminase fusion, Nat. Biotechnol., 2018, vol. 36, pp. 324–327.

    Article  CAS  PubMed  Google Scholar 

  33. Li, X., Yu, B., Sun, Q., et al., Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 115, no. 2, pp. 415–420. http://www.pnas.org/cgi/doi/10.1073/pnas.1703601115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, F.B., Liu, X., Xie, J.W., et al., Verification of a sporadic Alzheimer disease model in SORL1 gene knockout mice, Nan Fang Yi Ke Da Xue Xue Bao, 2018, vol. 38, pp. 289–295.

    CAS  PubMed  Google Scholar 

  35. Lykken, E.A., Shyng, C., Edwards, R.J., et al., Recent progress and considerations for AAV gene therapies targeting the central nervous system, J. Neurodev. Disord., 2018, vol. 10, p. 16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma, H., Marti-Gutierrez, N., Park, S.W., et al., Correction of a pathogenic gene mutation in human embryos, Nature, 2017, vol. 548, pp. 413–419.

    Article  CAS  PubMed  Google Scholar 

  37. Malankhanova, T.B., Anastasia, A., Malakhova, A.A., et al., Modern genome editing technologies in Huntington’s disease research, J. Huntington’s Dis., 2017, vol. 6, pp. 19–31.

    Article  Google Scholar 

  38. Mendell, J.R., Al-Zaidy, S., Shell, R., et al., Single-dose gene-replacement therapy for spinal muscular atrophy, New Engl. J. Med., 2017, vol. 377, pp. 1713–1722.

    Article  CAS  PubMed  Google Scholar 

  39. Miller, J.C., Tan, S., Qiao, G., et al., A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 2011, vol. 29, pp. 143–148.

    Article  CAS  PubMed  Google Scholar 

  40. Mittermeyer, G., Christine, C.W., Rosenbluth, K.H., et al., Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease, Hum. Gene Ther., 2012, vol. 23, pp. 377–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nimsanor, N., Poulsen, U., Rasmussen, M.A., et al., Generation of an isogenic, gene-corrected iPSC line from a symptomatic 59-year-old female patient with frontotemporal dementia caused by a R406W mutation in the microtubule associated protein tau (MAPT) gene, Stem Cell Res., 2016, vol. 17, pp. 576–579.

    Article  CAS  PubMed  Google Scholar 

  42. Pihlstrøm, L., Wiethoff, S., and Houlden, H., Genetics of neurodegenerative diseases: an overview, Handb. Clin. Neurol., 2017, vol. 145, pp. 309–323. https://doi.org/10.1016/B978-0-12-802395-2.00022-5

  43. Powell, S.K., Gregory, J., Akbarian, S., and Brennand, K.J., Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease, Mol. Cell. Neurosci., 2017, vol. 82, pp. 157–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ring, K.L., An, M.C., Zhang, N., et al., Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human Huntington’s disease neural stem cells, Stem Cell Rep., 2015, vol. 5, pp. 1023–1038.

    Article  CAS  Google Scholar 

  45. Sasaguri, H., Nagata, K., Sekiguchi, M., et al., Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID, Nat. Commun., 2018, vol. 9, p. 2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Savell, K.E. and Day, J.J., Application of CRISPR/Cas9 in the mammalian central nervous system, Yale J. Biol. Med., 2017, vol. 90, pp. 567–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Savitskaya, E.E., Musharova, O.S., and Severinov, K.V., Diversity of CRISPR-cas prokaryotic adaptive immunity mechanisms and applications for biotechnology, Biochemistry (Moscow), 2016, vol. 81, no. 7, pp. 870–880.

    Google Scholar 

  48. Schaub, R.T., Anders, D., Golz, G., et al., Serum nerve growth factor concentration and its role in the preclinical stage of dementia, Am. J. Psychiatry, 2002, vol. 159, pp. 1227–1229.

    Article  PubMed  Google Scholar 

  49. Schmid, B. and Haass, C., Genomic editing opens new avenues for zebrafish as a model for neurodegeneration, J. Neurochem., 2013, vol. 127, pp. 461–470.

    Article  CAS  PubMed  Google Scholar 

  50. Shimizu, Y., Sollu, C., and Meckler, J.F., Adding fingers to an engineered zinc finger nuclease can reduce activity, Biochemistry, 2011, vol. 50, pp. 5033–5041.

    Article  CAS  PubMed  Google Scholar 

  51. Shin, J.W., Kim, K. H., Chao, M.J., et al., Permanent inactivation of Huntington’s disease mutation by personalized allelespecific CRISPR/Cas9, Hum. Mol. Genet., 2016, vol. 25, pp. 4566–4576.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Soldner, F., Laganiere, J., Cheng, A.W., et al., Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations, Cell, 2011, vol. 146, pp. 318–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soldner, F., Stelzer, Y., Shivalila, C.S., et al., Parkinson-associated risk variant in enhancer element produces subtle effect on target gene expression, Nature, 2016, vol. 533, pp. 95–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stavrovskaya, A.V., Novosadova, E.V., Olshansky, A.S., et al., Effect of cell genome editing on the outcome of neurotransplantation in experimental Parkinsonism, Sovrem. Tehnol. Med., 2017, no. 9, pp. 7–14.

  55. Stepanichev, M.Yu., Current approaches and future directions of gene therapy in Alzheimer’s disease, Neurochem. J., 2011, vol. 5, pp. 159–169.

    Article  CAS  Google Scholar 

  56. Suzuki, K. and Belmonte, J.C., In vivo genome editing via the HITI method as a tool for gene therapy, J. Hum. Genet., 2018, vol. 63, pp. 157–164.

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., et al., In vivo genome editing via CRISPR/Cas9 mediated homologyindependent targeted integration, Nature, 2016, vol. 540, pp. 144–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tosolini, A.P. and Sleigh, J.N., Motor neuron gene therapy: lessons from spinal muscular atrophy for amyotrophic lateral sclerosis, Front. Mol. Neurosci., 2017, vol. 10, p. 405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuszynski, M.H., Thal, L., Pay, M., et al., A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease, Nat. Med., 2005, vol. 11, pp. 551–555.

    Article  CAS  PubMed  Google Scholar 

  60. Tuszynski, M.H., Yang, J.H., Barba, D., et al., Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease, J.A.M.A. Neurol., 2015, vol. 72, pp. 1139–1147.

    Google Scholar 

  61. Uemura, T., Mori, T., Kurihara, T., et al., Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in uteroelectroporation techniques, Sci. Rep., 2017, vol. 6, p. 35861.

    Article  CAS  Google Scholar 

  62. Verheijen, J. and Sleegers, K., Understanding Alzheimer disease at the interface between genetics and transcriptomics, Trends Genet., 2018, vol. 34, pp. 434–447.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X., Wang, Y., Wu, X., et al., Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors, Nat. Biotechnol., 2015, vol. 33, pp. 175–178.

    Article  CAS  PubMed  Google Scholar 

  64. Woodruff, G., Young, J.E., Martinez, F.J., et al., The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells, Cell Rep., 2013, vol. 5, pp. 974–985.

    Article  CAS  PubMed  Google Scholar 

  65. Wright, A.V., Nunez, J.K., and Doudna, J.A., Review biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering, Cell, 2016, vol. 164, pp. 29–44.

    Article  CAS  PubMed  Google Scholar 

  66. Xu, S., Cao, S., Zou, B., et al., An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease, Genome Biol., 2016, vol. 17, p. 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, T., Li, Y., van Nostrand, J.D., et al., Cas9-based tools for targeted genome editing and transcriptional control, Appl. Environ. Microbiol., 2014, vol. 80, pp. 1544–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yee, J.K., Off-target effects of engineered nucleases, FEBS J., 2016, vol. 283, pp. 3239–3248.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, X., Xin, J., Fan, N., et al., Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer, Cell. Mol. Life Sci., 2015, vol. 72, pp. 1175–1184.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Program of the Presidium of RAS “Fundamental Science for Biomedical Technologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Stepanichev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Stepanichev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanichev, M.Y. Prospects for the Use of Genome-Editing Technology to Correct Neurodegenerative Diseases. Adv Gerontol 9, 154–163 (2019). https://doi.org/10.1134/S2079057019020218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057019020218

Keywords:

Navigation