Skip to main content
Log in

Features of Deformation of High-Alloy Heat-Resistant Nickel Alloys near the Complete Dissolution Temperature of the Strengthening γ' Phase

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The features of deformation of high-alloy heat-resistant nickel alloys for disks of gas turbine engines of the Ni–Co–Cr–W–Al–Nb–Ti–Mo system (EP962, EK151, and EP975 type) have been studied near the temperature of complete dissolution of the strengthening γ' phase. Analysis of the deformation curves has shown that the softening processes are controlled by dynamic recrystallization, and the greatest decrease in the flow stress in the two-phase region is observed at a temperature of ~20°C below the complete dissolution of the γ' phase, which is associated with the presence of ~10% of γ' particles larger than 1.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies for their processing until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33. https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  2. Kablov, E.N., Tendentsii i orientiry innovatsionnogo razvitiya Rossii (Trends and Targets of Innovative Development of Russia), Moscow: Vseross. Inst. Aviats. Mater., 2015, 3rd ed.

  3. Kablov, E.N., Ospennikova, O.G., Lomberg, B.S., and Sidorov, V.V., Advanced technologies for the production of heat-resistant materials for aircraft engine manufacturing, Probl. Chern. Metall. Materialoved., 2013, no. 3, pp. 47–54.

  4. Ospennikova, O.G., The results of the implementation of strategic trends for the creation of a new generation of heat-resistant casting and deformable alloys and steels in 2012–2016, Aviats. Mater. Tekhnol., 2017, suppl., pp. 17–23. https://doi.org/10.18577/2071-9140-2017-0-S-17-23

  5. Kablov, E.N., Ospennikova, O.G., Kucheryaev, V.V., Rozenenkova, V.A., Mironova, N.A., and Kapitanenko, D.V., Thermomechanical behavior of intermetallic alloys of the Ni–Al–Co and Ti–Al–Nb systems during isothermal deformation, Pis’ma Mater., 2016, no. 6 (3), pp. 189–194.

  6. Galkina, V.G. and Lomberg, B.S., Influence of microstructure on characteristics of EP962 highly heat-resistant alloy, Aviats. Prom-st’, 1985, no. 4, pp. 42–45.

  7. Lomberg, B.S., Gorin, V.A., Gerasimov, D.E., et al., Highly heat-resistant deformable nickel alloys for gas turbine disks and their production technology, Tekhnol. Legk. Splavov, 1993, no. 7, pp. 45–59.

  8. Lomberg, B.S., Ovsepyan, S.V., and Latyshev, V.B., Modern deformable heat-resistant alloys, Trudy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie” (Proc. Int. Sci.-Tech. Conf. “S.T. Kishkin’s Scientific Concepts and Modern Material Science”), Moscow: Vseross. Inst. Aviats. Mater., 2006, pp. 75–84.

  9. Ovsepyan, S.V., Lomberg, B.S., Bakradze, M.M., Letnikov, M.N., Mazalov, I.S., and Akhmedzyanov, M.V., Modern high-temperature deformable nickel alloys of the All-Russian Scientific Research Institute of Aviation Materials for GTE parts, Materialy konferentsii “Sovremennye zharoprochnye deformiruemye nikelevye i intermetallidnye splavy, metody ikh obrabotki” (Proc. Conf. “Modern Heat-Resistant Deformable Nickel and Intermetallide Alloys and Their Processing”), Moscow: Vseross. Inst. Aviats. Mater., 2015, no. 1.

  10. Lomberg, B.S., Ovsepyan, S.V., Bakradze, M.M., Letnikov, M.N., and Mazalov, I.S., Use of new deformable nickel alloys for advanced gas turbine engines, Aviats. Mater. Tekhnol., 2017, suppl., pp. 116–129. https://doi.org/10.18577/2071-9140-2017-0-S-116-129

  11. Korotkii, A.V., Vavilin, N.L., Pomel’nikova, A.S., and Ovsepyan, S.V., Effect of manufacturing technology on the structure and properties of heat-resistant nickel alloy for helicopter gas turbine engine disks, Tekhnol. Met., 2016, no. 2, pp. 10–15.

  12. Shestakova, A.A., Letnikov, M.N., Bakradze, M.M., Bubnov, M.V., and Skugorev, A.V., Change in the microstructure of Ni alloy disk workpieces for gas turbine engines produced by the HIP + deformation method, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 4, pp. 945–950.

    Article  Google Scholar 

  13. Reed, R.C., The Superalloys: Fundamentals and Applications, Cambridge: Cambridge Univ. Press, 2008.

    Google Scholar 

  14. Ospennikova, O.G., Bubnov, M.V., and Kapitanenko, D.V., Computer modeling of metal pressing, Aviats. Mater. Tekhnol., 2012, suppl., pp. 141–147.

  15. Bakradze, M.M., Skugorev, A.V., Kucheryaev, V.V., and Bubnov, M.V., Computer simulation of technological processes of metal pressuring as a tool for the development of new technologies, Aviats. Mater. Tekhnol., 2017, suppl., pp. 175–185. https://doi.org/10.18577/2071‑9140‑2017‑0‑S-175-185

  16. Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Sims, C.T., Stoloff, N.S., and Hagel, W.C., Eds., New York: Wiley, 1987.

    Google Scholar 

  17. Novikov, I.I., Zolotorevskii, V.S., Portnoi, V.K., Belov, N.A., Livanov, D.V., Medvedeva, S.V., Akse-nov, A.A., and Evseev, Yu.V., Metallovedenie (Metal Science), Moscow: Mosk. Inst. Stali Splavov, 2014, vol. 2.

    Google Scholar 

  18. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: Mosk. Inst. Stali Splavov, 2005, 3rd ed.

  19. Quan, G.-Z., Characterization for dynamic recrystallization kinetics based on stress-strain curves, in Recent Developments in the Study of Recrystallization, Wilson, P., Rijeka: InTech, 2013.

  20. Wilkinson, N.A., Technological considerations in the forging of superalloy rotor parts, Met. Technol., 1977, vol. 4, pp. 346–359.

    Article  Google Scholar 

  21. Semiatin, S.L., Weaver, D.S., Kramb, R.C., Fagin, P.N., Glavicic, M.G., Goetz, R.L., Frey, N.D., and Antony, M.M., Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material, Metall. Mater. Trans. A, 2004, vol. 35, no. 2, pp. 679–693.

    Article  Google Scholar 

  22. Fulop, S. and McQueen, H.J., Mechanisms of deformation in the hot working of nickel-base superalloys, Proc. Second Int. Conf. “Superalloys Processing,” Columbus, OH: Met. Ceram. Inf. Center, 1972, pp. H1–H21.

  23. Fulop, S. and McQueen, H.J., Hot torsion, structure of Waspalloy, J. Test. Eval., 1977, vol. 5, pp. 419–426.

    Article  Google Scholar 

  24. McQueen, H.J., Failure at elevated temperatures: influence of dynamic restoration, Mater. Sci. Forum, 2009, vols. 604–605, pp. 285–329.

  25. Chen, X.-M., Lin, Y.C., Wen, D.-X., Zhang, J.-L., and He, M., Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation, Mater. Des., 2014, vol. 57, pp. 568–577.

    Article  CAS  Google Scholar 

  26. Luton, M.J. and Sellars, C.M., Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation, Acta Metall., 1969, vol. 17, no. 8, pp. 1033–1043.

    Article  CAS  Google Scholar 

  27. Razuvaev, E.I., Moiseev, N.V., Kapitanenko, D.V., and Bubnov, M.V., Modern metal forming technologies, Tr. Vseross. Inst. Aviats. Mater., 2015, no. 2, art. 3. https://doi.org/10.18577/2307‑6046‑2015‑0‑2‑3‑3. http://viam-works.ru. Accessed June 25, 2018.

  28. Izakov, I.A., Kapitanenko, D.V., Bubnov, M.V., and Bazhenov, A.S., The parameters of technological processes of isothermal deformation, Nov. Materialoved. Nauka Tekh., 2016, no. 5 (23).

  29. Ospennikova, O.G., Lomberg, B.S., Moiseev, N.V., and Kapitanenko, D.V., Isothermal deformation of heat-resistant alloys, Metallurgist, 2014, vol. 57, nos. 9–10, pp. 949–953.

  30. Ponomarenko, D.A., Skugorev, A.V., Sidorov, S.A., and Shpagin, A.S., Influence of heat exchange between a billet and a die on the stamping of parts for aerospace industry on specialized isothermal presses, Tr. Vseross. Inst. Aviats. Mater., 2015, no. 2, art. 3. https://doi.org/10.18577/2307‑6046‑2016‑0‑10‑3‑3. http://viam-works.ru. Accessed June 25, 2018.

  31. Huang, K. and Logé, R.E., A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 2016, vol. 111, pp. 548–574.

    Article  CAS  Google Scholar 

  32. Kondrat’ev, N.S. and Trusov, P.V., Mechanisms of nuclei recrystallization in metals during thermomechanical treatment, Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., 2016, no. 4, pp. 151–174.

  33. Zhang, H., Zhang, K., Jiang, S., and Lu, Z., The dynamic recrystallization evolution and kinetics of Ni–18.3Cr–6.4Co–5.9W–4Mo–2.19Al–1.16Ti superalloy during hot deformation, J. Mater. Res., 2015, vol. 30, no. 7, pp. 1029–1041.

    Article  CAS  Google Scholar 

  34. Ebrahimi, R. and Shafiei, E., Mathematical modeling of single peak dynamic recrystallization flow stress curves in metallic alloys, in Recrystallization, London: InTechOpen, 2012. ISBN 978‑953‑51‑0122‑2

  35. Liu, Y., Ning, Y., Yao, Z., Li, H., Miao, X., Li, Y., and Zhao, Z., Plastic deformation and dynamic recrystallization of a powder metallurgical nickel-based superalloy, J. Alloys Compd., 2016, vol. 675, pp. 73–80.

    Article  CAS  Google Scholar 

  36. Zhang, P., Yi, C., Chen, G., Qin, H., and Wang, C., Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy, Metals, 2016, vol. 6, no. 7, p. 161.

    Article  Google Scholar 

  37. Valitov, V.A., Deformation and heat treatments are the effective methods for obtaining of ultrafine-grained and nanocrystalline structure in nickel alloys, Pis’ma Mater., 2013, vol. 3, pp. 50–55.

    Google Scholar 

  38. Valitov, V.A. and Utyashev, F.Z., Control of the structure and properties of heat-resistant nickel alloys by deformation and heat treatment, Materialy 52-oi Mezhdunarodnoi nauchnoi konferentsii “Aktual’nye problemy prochnosti,” g. Ufa, Rossiya, 4–8 iyunya 2012 g. (Proc. 52 Int. Sci. Conf. “Current Problems in the Strength of Materials,” Ufa, Russia, June 4–8, 2012), Ufa: Bashkir. Gos. Univ., 2012, pp. 5.

  39. Portnoi, V.K., Alalykin, A.A., and Novikov, I.I., Formation of an ultrafine-grained structure in heat-resistant nickel alloys during hot deformation, in Metallovedenie i obrabotka tsvetnykh splavov (Metal Science and Processing of Nonferrous Alloys), Moscow: Nauka, 1992, pp. 98–110.

  40. Charpagne, M.A., Vennégués, P., Billot, T., Franchet, J.M., and Bozzolo, N., Evidence of multimicrometric coherent g' precipitates in a hot-forged g–g' nickel-based superalloy, J. Microsc., 2016, vol. 263, no. 1, pp. 106–112.

    Article  CAS  Google Scholar 

  41. Charpagne, M.A., Billot, T., Franchet, J.‑M., and Bozzolo, N., Heteroepitaxial recrystallization observed in René 65 TM and Udimet 720 TM: a new recrystallization mechanism possibly occurring in all low lattice mismatch g–g' superalloys? Proc. 13th Int. Symp. on Superalloys “Superalloys 2016,” Pittsburgh, PA: Miner., Met. Mater. Soc., 2016, pp. 417–426.

  42. Miller, V.M., Payton, E.J., and Pilchak, A.L., Reduction in the thermodynamic nucleation barrier via the heteroepitaxial recrystallization mechanism, Scr. Mater., 2017, vol. 136, pp. 128–131.

    Article  CAS  Google Scholar 

  43. Gong, Z., Bao, H., and Yang, G., Dynamic recrystallization and hot-working characteristics of Ni-based alloy with different tungsten content, Metals, 2019, vol. 9, no. 3, p. 298. https://doi.org/10.3390/met9030298

    Article  CAS  Google Scholar 

  44. Wen, D.-X., Lin, Y.C., and Zhou, Y., A new dynamic recrystallization kinetics model for a Nb containing Ni–Fe–Cr-based superalloy considering influences of initial d phase, Vacuum, 2017, vol. 141, pp. 316–327.

    Article  CAS  Google Scholar 

  45. GOST (State Standard) 5632-2014: Stainless Steels and Corrosion Resisting, Heat-Resisting and Creep Resisting Alloys. Grades, Moscow: Standartinform, 2015.

  46. Utyashev, F.Z. and Raab, G.I., Deformatsionnye metody polucheniya i obrabotki ul’tramelkozernistykh i nanostrukturnykh materialov (Production and Treatment of Ultrasmall-Grained and Nanostructure Materials by Deformation), Ufa: Gilem, 2013.

  47. Zhao, Z.L., Ning, Y.Q., Guo, H.Z., Yao, Z.K., and Fu, M.W., Discontinuous yielding in Ni-base superalloys during high-speed deformation, Mater. Sci. Eng., A, 2015, vol. 620, pp. 383–389.

    Article  Google Scholar 

  48. He, G., Liu, F., Huang, L., Huang, Z., and Jiang, L., Controlling grain size via dynamic recrystallization in an advanced polycrystalline nickel base superalloy, J. Alloys Compd., 2017, vol. 701, pp. 909–919.

    Article  CAS  Google Scholar 

  49. Trusov, P.V. and Chechulina, E.A., Discontinuous fluidity: models based on physical theories of plasticity, Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., 2017, no. 1, pp. 134–163.

  50. Weis, M.J., Mataya, M.C., Thompson, S.W., and Matlock, D.K., The hot deformation behavior of an as cast alloy 718 ingot, in Superalloy 718—Metallurgy and Application, Loria, E.A., Ed., Warrendale, PA: Miner., Met. Mater. Soc., 1989, pp. 135–154.

    Google Scholar 

  51. Dudova, N.R., Kaibyshev, R.O., and Valitov, V.A., Short-range ordering and the abnormal mechanical properties of a Ni-20% Cr alloy, Phys. Met. Metallogr., 2009, vol. 108, no. 6, pp. 625–633.

    Article  Google Scholar 

  52. Wang, Y., Shao, W.Z., Zhen, L., Yang, C., and Zhang, X.M., Tensile deformation behavior of superalloy 718 at elevated temperatures, J. Alloys Compd., 2009, vol. 471, pp. 331–335.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.A. Alalykin for taking active part in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ovsepyan.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsepyan, S.V., Lomberg, B.S., Letnikov, M.N. et al. Features of Deformation of High-Alloy Heat-Resistant Nickel Alloys near the Complete Dissolution Temperature of the Strengthening γ' Phase. Inorg. Mater. Appl. Res. 12, 159–166 (2021). https://doi.org/10.1134/S2075113321010305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321010305

Keywords:

Navigation