Skip to main content
Log in

Mechanochemical Synthesis of Dy2TiO5 Single-Phase Crystalline Nanopowders and Investigation of Their Properties

  • General Purpose Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Crystalline nanopowders of dysprosium titanate were prepared by the mechanochemical synthesis method using anatase and dysprosium oxide as the initial reagents. The duration of the mechanochemical treatment was 180 min. The crystal structure of mechanochemically synthesized Dy2TiO5 corresponds to a high-temperature cubic modification. The particle sizes of mechanochemically synthesized dysprosium titanate were 20–30 nm. The properties of the obtained nanopowders and bulk samples consolidated from them were studied. Commercial Dy2TiO5 powders prepared by melting the oxides were used for comparison. It was found that the Dy2TiO5 phase decomposes and the metastable DyTiO3 phase is formed during the sintering of mechanochemically synthesized nanopowders, which contradicts the classical Dy2O3–TiO2 phase diagram. No phase decomposition was observed in the case of sintering of commercial Dy2TiO5 powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sickafus, K., Grimes, R., Valdez, J., Cleave, A., Tang, M., Ishimaru, M., Corish, S., Stanek, C., and Uberuaga, B., Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater., 2007, vol. 3, pp. 217–223.

    Article  Google Scholar 

  2. Gosset, D., Absorber Materials for Generation IV Reactors. Structural Materials for Generation IV Nuclear Reactors, Amsterdam: Elsevier, 2017, pp. 533–567.

    Book  Google Scholar 

  3. Chernishov, V.M. and Vasilchenko, I.N., Control members of WWER-440 and WWER-1000 power reactors, Proc. Technical Committee Meeting “Advances in Control Assembly Materials for Water Reactors,” Vienna: At. Energy Agency, 1993, pp. 105–119.

    Google Scholar 

  4. Risovany, V.D., Zakharov, A.V., Muraleva, E.M., Kosenkov, V.M., and Latypov, R.N., Dysprosium hafnate as absorbing material for control rods, J. Nucl. Mater., 2006, vol. 355, pp. 163–170.

    Article  CAS  Google Scholar 

  5. Risovany, V.D., Varlashova, E.E., and Suslov, D.N., Dysprosium titanate as an absorber material for control rods, J. Nucl. Mater., 2000, vol. 281, pp. 84–89.

    Article  CAS  Google Scholar 

  6. Kim, H., Jung, C., Lee, B., and Sohn, D., Properties of dysprosium titanate as a control rod material, Trans. Korean Nuclear Society Spring Meeting, Jeju: Korean Nucl. Soc., 2007, pp. 10–11.

    Google Scholar 

  7. Zhang, J., Zhang, F., Lang, M., Lu, F., Lian, J., and Ewing, R., Ion-irradiation-induced structural transitions in orthorhombic Ln2TiO5, Acta Mater., 2013, vol. 61, no. 11, pp. 4191–4199.

    Article  CAS  Google Scholar 

  8. Sinha, A. and Sharma, B.P., Development of dysprosium titanate based ceramics, J. Am. Ceram. Soc., 2005, vol. 88, no. 8, pp. 1064–1066.

    Article  CAS  Google Scholar 

  9. Krasnorutskii, V.S., Saenko, S.Yu., Belash, N.N., Chernov, I.A., Surkov, A.E., Rybalchenko, N.D., and Belkin, F.V., Hot pressing of dysprosium hafnate and titanate pellets, Powder Metall. Met. Ceram., 2012, vol. 50, no. 11, pp. 708–713.

    Article  CAS  Google Scholar 

  10. Galahom, A.A., Investigation of different burnable absorbers effects on the neutronic characteristics of PWR assembly, Annu. Nucl. Energy, 2016, vol. 94, pp. 22–31.

    Article  CAS  Google Scholar 

  11. Su, Y., Sui, Y., Wang, X., Cheng, J., Wang, Y., Liu, W., and Liu, X., Large magnetocaloric properties in singlecrystal dysprosium titanate, Mater. Lett., 2012, vol. 72, pp. 15–17.

    Article  CAS  Google Scholar 

  12. Sakakibaraa, T., Tayama, T., Matsuhira, K., Takagi, S., and Hiroi, Z., Liquid–gas transition in the spin-ice dysprosium titanate, J. Magn. Magn. Mater., 2004, vol. 276, pp. 1312–1313.

    Article  Google Scholar 

  13. Scharffe, S., Kolland, G., Valldor, M., Cho, V., Welter, J.F., and Lorenz, T., Heat transport of the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7, J. Magn. Magn. Mater., 2014, pp. 1–5.

    Google Scholar 

  14. Lau, G.C., Muegge, B.D., McQueen, T.M., Duncan, E.L., and Cava, R.J., Stuffed rare earth pyrochlore solid solutions, J. Solid State Chem., 2006, vol. 179, pp. 3126–3135.

    Article  CAS  Google Scholar 

  15. Pan, T. and Lin, C., Structural and sensing characteristics of Dy2O3 and Dy2TiO5 electrolyte–insulator–semiconductor pH sensors, J. Phys. Chem., 2010, vol. 114, pp. 17914–17919.

    CAS  Google Scholar 

  16. Lin, Y., Wang, S., Wu, M., Pan, T., Lai, C., Luo, J., and Chiou, C., Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads, Biosens. Bioelectron., 2013, vol. 43, pp. 328–335.

    Article  CAS  Google Scholar 

  17. Chen, F. and Pan, T., Physical and electrical properties of Dy2O3 and Dy2TiO5 metal oxide–high–κ oxide–silicon-type nonvolatile memory devices, J. Electron. Mater., 2012, vol. 41, no. 8, pp. 2197–2203.

    Article  CAS  Google Scholar 

  18. Potel, M., Kallistov, A., Boh, J., and Ka, I., Sol-gel synthesis and crystallization kinetics of dysprosiumtitanate Dy2Ti2O7 for photonic applications, Mater. Chem. Phys., 2015, vol. 168, pp. 159–167.

    Article  Google Scholar 

  19. Renuka, N.K. and Akhila, A.K., Preparation and photocatalytic activity of anatase titania modified with dysprosium oxide, J. Chem. Pharm. Sci., 2016, no. 1, pp. 79–84.

    Google Scholar 

  20. Xiao, H., Wang, L., Zu, X., Lian, J., and Ewing, R., Theoretical investigation of structural, energetic and electronic properties of titanate pyrochlores, J. Phys. Condens. Matter., 2007, vol. 19, pp. 1–12.

    Google Scholar 

  21. Lang, M., Zhang, F., Zhang, J., Wang, J., Lian, J., Weber, W., Schuster, B., Trautmann, C., Neumann, E., and Ewing, R., Review of A2B2O7 pyrochlore response to irradiation and pressure, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, no. 19, pp. 2951–2959.

    Article  CAS  Google Scholar 

  22. Lian, J., Wang, L.M., Ewing, R.C., and Boatner, L.A., Ion beam implantation and cross-sectional TEM studies of lanthanide titanate pyrochlore single crystals, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, vol. 241, pp. 365–371.

    Article  CAS  Google Scholar 

  23. Lumpkin, G., Pruneda, M., Rios, S., Smith, K., Trachenko, K., Whittle, K., Zaluzec, K., and Nestor, J., Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds, J. Solid State Chem., 2007, vol. 180, pp. 1512–1518.

    Article  CAS  Google Scholar 

  24. Guo, X., Feng, Y., Zhao, J., Ma, L., Li, Q., Zhang, Z., Gong, H., and Zhang, Y., Neutron adsorption performance of Dy2TiO5 materials obtained from powders synthesized by the molten salt method, Ceram. Int., 2017, vol. 43, no. 2, pp. 1975–1979.

    Article  CAS  Google Scholar 

  25. Yu, J., Liu, X., Ma, L., and Zheng, H., Microwave assisted synthesis of Dy2Ti2O7 ultrafine powders by sol–gel method, Ceram. Int., 2016, vol. 42, no. 9, pp. 11177–11183.

    Article  CAS  Google Scholar 

  26. Panneerselvam, G., Krishnan, R., Antony, M., Nagarajan, K., Vasudevan T., and Rao, P., Thermophysical measurements on dysprosium and gadolinium titanates, J. Nucl. Mater., 2004, vol. 327, pp. 220–225.

    Article  CAS  Google Scholar 

  27. Jung, C., Kim, C., and Lee, S., Synthesis and sintering studies on Dy2TiO5 prepared by polymer carrier chemical process, J. Nucl. Mater., 2006, vol. 354, pp. 137–142.

    Article  CAS  Google Scholar 

  28. García-Martínez, G., Martínez-González, L.G., Escalante-García, J.I., and Fuentes, A.F., Phase evolution induced by mechanical milling in Ln2O3: TiO2 mixtures (Ln = Gd and Dy), Powder Technol., 2005, vol. 152, pp. 72–78.

    Article  Google Scholar 

  29. Fuentes, A., Boulahya, K., Maczka, M., Hanuza, J., and Amador, U., Synthesis of disordered pyrochlores, A2Ti2O7 (A = Y, Gd and Dy), by mechanical milling of constituent oxides, Solid State Sci., 2005, vol. 7, no. 4, pp. 343–353.

    CAS  Google Scholar 

  30. Huang, J., Ran, G., Lin, J., Shen, Q., Lei, P., Wang, X., and Li, N., Microstructural evolution of Dy2O3–TiO2 powder mixtures during ball milling and post-milled annealing, Materials, 2017, vol. 10, no. 1, pp. 14–19.

    Article  Google Scholar 

  31. Eremeeva, J.V., Panov, V.S., Myakisheva, L.V., Lizunov, A.V., Nepapushev, A.A., Sidorenko, D.A., Pavlik, A.V., and Apostolova, E.V., Structure and properties of the dysprosium titanate powder produced by the mechanochemical synthesis, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 2017, no. 1, pp. 11–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Eremeeva.

Additional information

Original Russian Text © J.V. Eremeeva, S. Vorotilo, D.Yu. Kovalev, A.A. Gofman, V.Y. Lopatin, 2017, published in Perspektivnye Materialy, 2017, No. 11, pp. 64–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeeva, J.V., Vorotilo, S., Kovalev, D.Y. et al. Mechanochemical Synthesis of Dy2TiO5 Single-Phase Crystalline Nanopowders and Investigation of Their Properties. Inorg. Mater. Appl. Res. 9, 291–296 (2018). https://doi.org/10.1134/S2075113318020090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318020090

Keywords

Navigation