Skip to main content
Log in

Application of Differential Code Biases in Multi-GNSS Measurements in Real-Time Precise Point Positioning

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The article experimentally proves the importance of applying Differential Code Biases (DCB) when determining coordinates by Precise Point Positioning (PPP) based on multi-GNSS measurements (GPS, GLONASS, Galileo). The application of DCB significantly reduces the convergence time of the navigation solution. Modifications to RTKLIB software required for the experiment are described, which allow applying the DCB in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Wang, N., Yuan, Y., Li, Z., Montenbruck, O., and Tan, B., Determination of differential code biases with multi-GNSS observations, Journal of Geodesy, 2016, vol. 90, no. 3, pp. 209–228. https://doi.org/10.1007/s00190-015-0867-4

    Article  Google Scholar 

  2. Montenbruck, O., Hauschild, A., and Steigenberger, P., Differential code bias estimation using multi-GNSS observations and global ionosphere maps: Multi-GNSS DCB estimation, Navigation, 2014, vol. 61, no. 3, pp. 191–201. https://doi.org/10.1002/navi.64

    Article  Google Scholar 

  3. Schaer, S., SINEX BIAS – Solution (Software/technique) Independent Exchange Format for GNSS Biases Version 1.00, IGS Workshop on GNSS Biases, 2015, Bern, Switzerland.

  4. Li, Z., Yuan, Y., Li, H., Ou, J., and Huo, X., Two-step method for the determination of the differential code biases of COMPASS satellites, Journal of Geodesy, 2012, vol. 86, no. 11, pp. 1059–1076. https://doi.org/10.1007/s00190-012-0565-4

    Article  Google Scholar 

  5. GNSS Differential Code Bias Product. URL: https://cddis.nasa.gov/archive/gnss/products/bias/.

  6. RINEX. The Receiver Independent Exchange Format. Version 4.00, 2021.

  7. Bahadur, B. and Nohutcu, M., Comparative analysis of MGEX products for post-processing multi-GNSS PPP, Measurement, 2019, vol. 145, pp. 361–369. https://doi.org/10.1016/j.measurement.2019.05.094

    Article  Google Scholar 

  8. Kiliszek, D. and Kroszczyński, K., Performance of the precise point positioning method along with the development of GPS, GLONASS and Galileo systems, Measurement, 2020, vol. 164, p. 108009. https://doi.org/10.1016/j.measurement.2020.108009

    Article  Google Scholar 

  9. Xu, Y., Yang, Y., and Li, J., Performance evaluation of BDS-3 PPP-B2b precise point positioning service, GPS Solutions, 2021, vol. 25, no. 4, p. 142. https://doi.org/10.1007/s10291-021-01175-2

    Article  Google Scholar 

  10. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., and Webb, F.H., Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 1997, vol. 102, no. B3, pp. 5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

  11. Wang, N., Li, Z., Duan, B., Hugentobler, U., and Wang, L., GPS and GLONASS observable-specific code bias estimation: comparison of solutions from the IGS and MGEX networks, Journal of Geodesy, 2020, vol. 94, no. 8, p. 74. https://doi.org/10.1007/s00190-020-01404-5

    Article  Google Scholar 

  12. Antonovich, K.M. and Lipatnikov, L.A., Improving the technique of Precise Point Positioning by GNSS measurements, Izvestiya vuzov. Geodeziya i aerofotos’emka, 2013, no.4, pp. 44–47.

  13. Takasu, T., RTKLIB, ver. 2.4.2, Manual, 2013.

    Google Scholar 

  14. BSD-2-Clause. URL: https://opensource.org/licenses/BSD-2-Clause.

  15. Dolin, S.V., RTKLIB 2.4.3 b34 with support differential code biases for GPS, GLONASS, Galileo (fork). URL: https://github.com/SergeyDolin/RTKLIB/ tree/rtklib_2.4.3.

  16. Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., and Schaer, S., The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, prospects and challenges, Advances in Space Research, 2017, vol. 59, no. 7, pp. 1671–1697. https://doi.org/10.1016/j.asr.2017.01.011

    Article  Google Scholar 

  17. Trimble GNSS planning online. URL: https:// www.gnssplanning.com/.

  18. Wübbena, G., Wübbena, J., Wübbena, T., and Schmitz, M., SSR Technology for Scalable Real-Time GNSS Applications, IGS Workshop, 2017, 20 p.

  19. The International Terrestrial Reference Frame (ITRF). URL: http://itrf.ensg.ign.fr/.

Download references

Funding

The work was supported by the Research Project GEOTECH-Kvant 121111600209-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dolin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolin, S.V. Application of Differential Code Biases in Multi-GNSS Measurements in Real-Time Precise Point Positioning. Gyroscopy Navig. 13, 276–282 (2022). https://doi.org/10.1134/S2075108722040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108722040034

Keywords:

Navigation