Skip to main content
Log in

Estimating the Time Difference of Moving Transportable Atomic Clock Using GNSS Signals

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstrast—The purpose of this work is to determine the time difference of transportable atomic clock during motion and to study the accuracy of obtained estimates. The estimates are obtained using the measurements from Global Navigation Satellite Systems and inertial navigation system. Results from autonomous and integrated processing of measurements from two systems are presented. Decrease in time difference error by integration of measurements is quantitatively estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Povalyaev, A.A., Sputnikovye radionavigatsionnye sistemy: vremya, pokazaniya chasov, formirovanie izmerenii i opredelenie otnositel’nykh koordinat (Satellite Radionavigation Systems: Time, Clock Readings, Measurement Generation and Determination of Relative Coordinates), Moscow: Radiotekhnika, 2008.

  2. Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., Global Positioning System. Theory and Practice, fifth edition, 2001.

    Book  Google Scholar 

  3. Springer Handbook of Global Navigation Satellite Systems (Springer Handbooks), Teunissen, P., and Montenbruck, O., Eds., 2017.

    Google Scholar 

  4. Shatilov, A.Yu. and Nagin, I.A., Tightly-coupled algorithm of integrating the receivers of satellite radionavigation systems and multipurpose INS, Radiotekhnika, 2012, no. 6, pp. 118–126.

  5. Gorev, P.A. and Kostikov, V.G., An approach to inertial navigation system-aided global navigation satellite system carrier phase positioning, Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, vol. 16, no. 11, pp. 757−764.

    Google Scholar 

  6. Al Bitar, N. and Gavrilov, A.I., Comparative analysis of fusion algorithms in a loosely-coupled integrated navigation system on the basis of real data processing, Gyroscopy and Navigation, 2019, vol. 10, no. 4, pp. 231–244.

    Article  Google Scholar 

  7. Ivanov, V.F. and Koshkarov, A.S., Noise immunity increase of GLONASS users' navigation equipment by complexation with inertial navigation sensors, Trudy MAI, 2017, no. 93, URL: trudymai.ru/published.php?ID=80455.

  8. Roth, J., Schaich, T., and Trommer, G.F., Cooperative GNSS-based method for vehicle positioning, Gyroscopy and Navigation, 2012, vol. 3, no. 3, pp. 245–254.

    Article  Google Scholar 

  9. Zhang, Y. and Gao, Y., Integration of INS and un-differenced GPS measurements for precise position and attitude determination, The Journal of Navigation, 2008, vol. 61, pp. 87−97, https://doi.org/10.1017/S0373463307004432

    Article  Google Scholar 

  10. Emel’yantsev, G.I., Blazhnov, B.A., and Stepanov, A.P., Using phase measurements for determining a vehicle’s attitude parameters by a GPS-aided inertial system, Gyroscopy and Navigation, 2011, vol. 2, no. 4, pp. 256−260.

    Article  Google Scholar 

  11. Sanz Subirana, J., Juan Zornoza, J.M., and Hernández-Pajares, M., GNSS Data Processing, vol. 1, Fundamentals and Algorithms, 2013.

    Google Scholar 

  12. Karaush, A.A., Khanykova, E.A., and Smirnov, F.R., Dynamic measurements for GNSS signals for comparisons of time scales, Proceedings of the 9th International Symposium “Metrology of Time and Space,” 2018, pp. 120–121.

  13. Kouba, J., A Guide to Using International GNSS Service (IGS) Products, 2009, URL: http://igscb.jpl.nasa. gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf.

  14. IERS Conventions, IERS technical note no. 36. International Earth Rotation and Reference Systems Service, Petit, G. and Luzum, B., 2010.

  15. Grewal, M.S., Weill, L.R., and Andrews, A.P., Global Positioning System, Inertial Navigation, and Integration, Wiley-Interscience, 2007, second edition.

    Book  Google Scholar 

  16. Inertial Explorer 8.5, Waypoint Software. NovAtel. URL: https://novatel.com/products/waypoint-software/inertial-explorer. Cited September 22, 2020.

  17. Center for Orbit Determination in Europe, URL: //ftp.aiub.unibe.ch/CODE/2019/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Karaush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaush, A.A., Karaush, E.A., Burtsev, S.Y. et al. Estimating the Time Difference of Moving Transportable Atomic Clock Using GNSS Signals. Gyroscopy Navig. 11, 310–318 (2020). https://doi.org/10.1134/S2075108720040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720040057

Keywords:

Navigation