Skip to main content
Log in

Improving the Accuracy of Marine Gravimeters

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Software- and hardware-based methods of compensation for dynamic errors of the marine gravimeters caused by inertial accelerations are considered. The error due to the fluid damping of the gravimeter sensing element is analyzed and taken into account for the first time. Some results of gravity measurements that confirm the increase in gravimeter accuracy are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Panteleev, V.L. Dynamic synthesis of marine gravimeters, in Morskie gravimetricheskie issledovaniya (Marine Gravimetric Surveys), Moscow, 1975, no. 8, pp. 22–47.

  2. Childers, V., Bell, R., and Brozena, J. Airborne gravimetry: An investigation of filtering, Geophysics, vol. 64, no. 1, 1999, pp. 61–69.

    Article  Google Scholar 

  3. Bolotin, Yu.V. and Yurist, S.Sh., Suboptimal smoothing filter for the marine gravimeter GT-2M, Proc. IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, St. Petersburg, Russia, 2010, pp. 7−11.

  4. Lianghui Guo, Xiaohong Meng, Zhaoxi Chen, Shuling Li, and Yuanman Zheng, Preferential filtering for gravity anomaly separation, Computers & Geosciences, vol. 51, 2013, pp. 247–254.

    Article  Google Scholar 

  5. Stepanov, O.A. and Koshaev, D.A., Analysis of filtering and smoothing techniques as applied to aerogravimetry, Gyroscopy and Navigation, 2010, vol. 1, no. 1, pp. 19–25.

    Article  Google Scholar 

  6. Stepanov, O. A., Koshaev, D. A., and Motorin, A. V., Designing Models for Signals and Errors of Sensors in Airborne Gravimetry Using Nonlinear Filtering Methods, Institute of Navigation International Technical Meeting 2015, ITM 2015, pp. 220–227.

  7. Bolotin Y.V., Golovan A.A. Methods of inertial gravimetry // Moscow University Mechanics Bulletin, 2013, vol. 68. no. 5, pp. 117–125.

    Article  Google Scholar 

  8. Forsberg, R., Olesen, A.V., Einarsson, I., Manandhar, N., and Shreshta, K., Geoid of Nepal from Airborne Gravity Survey. In: Rizos, C., Willis, P., (Eds.) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia. vol. 139, 2014, Springer.

    Google Scholar 

  9. Barzaghi, R., Albertella, A., Carrion, D., Barthelmes, F., Petrovic, S., and Scheinert, M., Testing Airborne Gravity Data in the Large-Scale Area of Italy and Adjacent Seas. In: Jin, S., Barzaghi, R., (Eds.), IGFS 2014 (International Association of Geodesy Symposia), Berlin, Heidelberg: Springer, 2015, pp. 39–44.

  10. Kazanin G.S., Zayats, I.V., Ivanov, G.I., Makarov, E.S., and Vasil’ev, A.S., Geophysical surveys in the North Pole area, Okeanologiya, 2016, vol. 56, no. 2, pp. 333–335.

    Google Scholar 

  11. Koneshov, V.N., Nepoklonov, V.B., Pogorelov, V.V., Solov’ev, V.N., and Afanasyeva, L.V., Gravitational field of the Arctic: The state of knowledge and prospects for the future, Fizika Zemli, 2016, no.3, pp. 113–122.

  12. Lu, B., Barthelmes, F., Petrovic, S., Forste, C., Flechtner, F., Luo, Z., He, K., and Li, M., Airborne gravimetry of GEOHALO mission: data processing and gravity field modeling, J. of Geophysical Research: Solid Earth, 122, 2017, pp. 10 586–10 604.

    Google Scholar 

  13. Forsberg, R., Olesen, A., Ferraccioli, F., Jordan, T., Matsuoka, K., Zakrajsek, A., Ghidella, M., and Greenbaum, J., Exploring the Recovery Lakes region and interior Dronning Maud Land, East Antarctica, with airborne gravity, magnetic and radar measurements, Geological Society, London, Special Publications, 461, 2017, pp. 23–34.

    Article  Google Scholar 

  14. Peshekhonov, V.G., Sokolov, A.V., and Krasnov A.A., The current state and prospects for the development of marine gravimetry in Russia, 11th Russian Multiconference on Problems of Control (11 Rossiiskaya mu’tikonferentsiya po problemam upravleniya), St.Petersburg: Eletropribor, 2018, pp. 6–16.

  15. Peshekhonov, V.G., Sokolov, A.V., Elinson, L.S., and Krasnov, A.A., A new air-sea gravimeter: development and test results, 22nd St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 193–199.

  16. Panteleev, V.L., Osnovy morskoy gravimetrii (Basics of Marine Gravimetry), Moscow: Nedra, 1983.

  17. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing), Part 2, Vvedenie v teoriyu fil’tratsii (Introduction to the Filtering Theory), St. Petersburg: TsNII Elektropribor, 2012.

  18. Krasnov, A.A., The results of bench and field tests of the airborne gravimeter gyrostabilizer, IX konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (9th Conference of Young Scientists “Navigation and Motion Control), 2007, pp. 26–33.

  19. Kutepov, V.S., Operating conditions of marine gyrostabilized gravimeter, Izvestiya TulGU. Tekhnicheskie nauki, 2012, no. 2, pp. 260–267.

  20. Krasnov, A.A., Nesenyuk, L.P., Sokolov, A.V., Stelkens-Kobsch, T.H., and Heyen, R., Test results of an airborne gravimeter, Proc. IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, St. Petersburg, Russia, 2008, pp. 73–77.

  21. Sovremennye metody i sredstva izmerenya parametrov gravitatsionnogo polya Zemli (Modern technologies and methods for measuring the Earth’s gravity field parameters), Eds., V.G. Peshekhonov, O.A. Stepanov, St. Petersburg: Concern CSRI Elektropribor, 2017.

    Google Scholar 

  22. Krasnov, A.A. and Sokolov, A.V., A Modern Software System of a Mobile Chekan-AM Gravimeter, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 278–287.

    Article  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Science Foundation, project no. 18-19-00627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.V., Krasnov, A.A. & Zheleznyak, L.K. Improving the Accuracy of Marine Gravimeters. Gyroscopy Navig. 10, 155–160 (2019). https://doi.org/10.1134/S2075108719030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108719030088

Keywords:

Navigation