Skip to main content
Log in

Solving the Nonlinear Problems of Estimation for Navigation Data Processing Using Continuous-Time Particle Filter

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

A new continuous-time particle filter algorithm is proposed for solving the problems of nonlinear estimation of signal when describing the mathematical models of an observed object and a measuring system by means of stochastic differential equations. This algorithm can be used in the estimation problems related to navigation data processing. The algorithm verification is presented by example of a navigation system error estimation using geophysical field map data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Non-linear Filtering Theory Applied to Navigation Information Processing), St. Petersburg: Concern CSRI Elektropribor, 1998.

    Google Scholar 

  2. Bergman, N., Recursive Bayesian estimation navigation and tracking applications, Ph.D. Diss., Linköping University, 1999.

    Google Scholar 

  3. Doucet, A., De Freitas, N. and Gordon N. (Eds), Sequential Monte Carlo Methods in Practice, Springer, 2001.

    MATH  Google Scholar 

  4. Bain, A. and Crisan, D., Fundamentals of Stochastic Filtering, Springer, 2009.

    Book  MATH  Google Scholar 

  5. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation. Part 1. An overview of algorithms, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 324–337.

    Article  Google Scholar 

  6. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation. Part 2. Trends in the algorithm development, Gyroscopy and Navigation, 2016, vol. 7, no. 1, pp. 82–89.

    Article  Google Scholar 

  7. Stepanov, O.A., Metody obrabotki navigatsionnoi izmeritel’noi informatsii (Methods of Navigation Measurement Data Processing), St. Petersburg: ITMO University, 2017.

    Google Scholar 

  8. Stepanov, O.A., Vasil’ev, V.A., Toropov, A.B., Loparev, A.V. and Basin, M.V., Analysis of filtering algorithms in navigation problems with polynomial measurements, Materialy XXXI konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proceedings of the 31st Conference in Memory of N.N. Ostryakov), St. Petersburg, Concern CSRI Elektropribor, 2018, pp. 146–154.

    Google Scholar 

  9. Sinitsyn, I.N., Fil’try Kalmana i Pugacheva (Kalman and Pugachev Filters), Moscow: Logos, 2007.

    Google Scholar 

  10. Rybakov, K.A., Statisticheskie metody analiza i fil’tratsii v nepreryvnykh stokhasticheskikh sistemakh (Statistical Methods of Analysis and Filtering in Continuous-Time Stochastic Systems), Moscow: Moscow Aviation Institute Publisher, 2017.

    Google Scholar 

  11. Stepanov, O.A. and Toropov, A.B., Application of sequential Monte Carlo methods using analytical integration procedures for navigation information processing, Proceedings of the 12th All-Russian Meeting on Control Issues (VSPU-2014), Moscow, June 16–19, 2014, Moscow: IPU RAN, 2014, pp. 3324–3337.

    Google Scholar 

  12. Bucy, R.S., Nonlinear filtering theory, IEEE Transactions on Automatic Control, 1965, vol. 10, no. 2, p. 198.

    Article  Google Scholar 

  13. Liptser, R.Sh. and Shiryaev, A.N., Nonlinear filtering of Markovian diffusion processes, Trudy MIAN SSSR (Materials of Steklov Mathematical Institute, USSR Academy of Sciences), 1968, vol. 104, pp. 135–180.

    Google Scholar 

  14. Zaritskii, V.S., Svetnik, V.B. and Shimelevich, L.I., Monte Carlo technique in problems of optimal data processing, Avtomatika i telemekhanika, 1975, no. 12, pp. 95–103.

  15. Gikhman, I.I. and Skorokhod, A.V., Vvedenie v teoriyu sluchainykh protsessov (Tutorial on the Theory of Random Processes), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  16. Øksendal, B., Stochastic Differential Equations: An Introduction with Applications (Translation into Russian), Moscow: Mir, 2003.

    Book  MATH  Google Scholar 

  17. Tikhonov, V.I. and Mironov, M.A., Markovskie protsessy (Markovian Processes), Moscow: Sovetskoe radio, 1977.

    MATH  Google Scholar 

  18. Mikhailov, G.A. and Voitishek, A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo (Numerical Statistical Modeling. Monte Carlo Methods), Moscow: Akademiya Publishing Center, 2006.

    Google Scholar 

  19. Silverman B.W. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

    Book  MATH  Google Scholar 

  20. Averina, T.A. and Rybakov, K.A., An approximate solution of the prediction problem for stochastic jump-diffusion systems, Numerical Analysis and Applications. 2017, vol. 10, no. 1, pp. 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudenko, E.A., Continuous finite-dimensional locally optimal filtering of jump diffusions, Journal of Computer and Systems Sciences International, 2018, vol. 57, no. 4, pp. 505–528.

    Article  MATH  Google Scholar 

  22. Hazewinkel, M., Lectures on linear and nonlinear filtering, in Analysis and Estimation of Stochastic Mechanical Systems, eds. W.O. Schiehlen, W. Wedig, Springer-Verlag, 1988, pp. 103–136.

    Chapter  Google Scholar 

  23. Luo, X., Yau, S.S.-T., Complete real time solution of the general nonlinear filtering problem without memory, IEEE Transactions on Automatic Control, 2013, vol. 58, no. 10, pp. 2563–2578.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rybakov, K.A., Robust Duncan-Mortensen-Zakai equation for non-stationary stochastic systems, Proceedings of the 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk Akademgorodok, Russia, September 18–22, 2017, IEEE, 2017, pp. 151–154.

    Google Scholar 

  25. Maruyama, G., Continuous Markov processes and stochastic equations, Rendiconti del Circolo Matematico di Palermo, Series 2, 1955, vol. 2, no. 4, pp. 48–90.

    Article  MathSciNet  MATH  Google Scholar 

  26. Burrage, K. and Tian, T., Predictor-corrector methods of Runge—Kutta type for stochastic differential equations, SIAM Journal on Numerical Analysis, 2002, vol. 40, no. 4, pp. 1516–1537.

    Article  MathSciNet  MATH  Google Scholar 

  27. Rybakov, K.A., On the particle filters software implementation for continuous-time observation and estimation systems, Materialy XXXI konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proceedings of the 31st Conference in Memory of N.N. Ostryakov), St. Petersburg, Concern CSRI Elektropribor, 2018, pp. 180–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Rybakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakov, K.A. Solving the Nonlinear Problems of Estimation for Navigation Data Processing Using Continuous-Time Particle Filter. Gyroscopy Navig. 10, 27–34 (2019). https://doi.org/10.1134/S2075108719010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108719010061

Keywords

Navigation