Skip to main content
Log in

Analysis of Temperature Fields in Angular Velocity Measurement Units on Fiber-Optic Gyros

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Mathematical models of 3D transient temperature fields in angular velocity measurement unit (AVMU) and constituent fiber-optic gyros both in basic structure and in the structure with reversible heat control system (HCS) are developed and implemented. Comparative analysis of temperature fields under complex temperature effects is conducted. Efficiency of reversible double-circuit HCS application is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volokonno-opticheskie datchiki (Fiber Optic Sensors), Introductory course for engineers and researchers, E. Udda, Ed., Moscow: Tekhnosfera, 2008.

  2. Vakhrameev, E.I., Galyagin, K.S., Kiselev, E.V., Oshivalov, M.A., and Ul’rikh, T.A., Thermal Drift of the Fiber Optic Gyroscope, Priborostroenie, 2011, no. 1, pp. 32–37.

    Google Scholar 

  3. Yonggang Zhang et al., Modeling of Thermal-Induced Rate Error for FOG with Temperature Ranging from ?40 to +60°C, IEEE Photonics Technology Letters, 2014, vol. 26, no. 1, pp. 305–310.

    Google Scholar 

  4. Quatraro, E., Pizzarulli, A., Catasta, M., Crescenti, G., Spinozzi, E., and Cingolani, A. High Performance FOG for Non Temperature Stabilized Environment, Inertial Sensors and Systems—Sympo sium Gyro Technology, 20–21 September, 2011, Karlsruhe, Germany.

    Google Scholar 

  5. Dzhashitov, V.E. and Pankratov, V.M., Matematicheskie modeli teplovogo dreifa giroskopicheskikh datchikov inertsial’nykh sistem (Mathematical Models of Thermal Drift of Gyroscopic Sensors in Inertial Systems), Peshekhonov, V.G., Ed., St. Petersburg, Elektropribor, 2001.

  6. Dzhashitov, V.E., and Pankratov, V.M., Datchiki, pribory i sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii (Sensors, Instruments and Systems for Aerospace and Marine Instrument-Engineering in Conditions of Thermal Effects), Peshekhonov, V.G., Ed., St. Petersburg, Elektropribor, 2005.

  7. Dzhashitov, V.E., Pankratov, V.M., Golikov, A.V., Gubanov, A.G., and Efremov, M.V., Reducing Thermal Sensitivity of a Fiber-Optic Gyros, Gyroscopy and Navigation, 2012, no. 1, pp. 56–65.

    Article  Google Scholar 

  8. Kolevatov, A.P., Nikolaev, S.G., Andreev, A.G., Ermakov V.S. et al., Progress in the Development of Strapdown Inertial Navigation Systems on Fiber-Optic Gyroscopes, 16th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2009, pp. 12–17.

    Google Scholar 

  9. Dzhashitov, V.E., Pankratov, V.M., and Barulina, M.A., Mathematical Models of the Thermoelastic Stress-Strain State and the Scale Factor Error of Fiber Optic Gyro Sensor, Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 2, pp. 43–52.

    Google Scholar 

  10. Dranitsyna, E.V., Egorov, D.A., Untilov, A.A., Deineka, G.B., Sharkov, I.A., and Deineka I.G., Reducing the Effect of Temperature Variations on FOG Output Signal, Gyroscopy and Navigation, 2013, no. 2, pp. 92–98.

    Article  Google Scholar 

  11. Pylaev, Yu.K., Gubanov, A.G., Yefremov, M.V., Kruglov, S.A., and Romanov, A.V., Fiber-Optic Gyroscope for Space Applications. Designing, Production and Operating Experience, 20th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 50–58.

    Google Scholar 

  12. Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E. et al., Navigation-Grade Interferometric Fiber Optical Gyroscope, 14th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2007, pp. 138–143.

    Google Scholar 

  13. Meshkovskii, I.K., Strigalyov, V.E., Deineka, G.B., Peshekhonov, V.G. et al., Three-axis Fiber-Optical Gyroscope. The Results of Development and Tests, 18th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2011, pp. 7–12.

    Google Scholar 

  14. Lefevr, E.K., The Fiber-Optic Gyroscope: Achievement and Perspective, Gyroscopy and Navigation, 2012, no. 4, pp. 223–226.

    Article  Google Scholar 

  15. Dzhashitov, V.E., Pankratov, V.M., Golikov, A.V., Nikolaev, S.G., Kolevatov, A.P., Plotnikov, A.D., and Koffer, K.V., Hierarchical Thermal Models of FOGbased Strapdown Inertial Navigation System, Gyroscopy and Navigation, 2014, no. 3, pp. 162–173.

    Article  Google Scholar 

  16. Dzhashitov, V.E., and Pankratov, V.M., Using the Method of Elementary Balances for Analysis and Synthesis of the Thermal Control System for FOG SINS based on Peltier Modules, Gyroscopy and Navigation, 2014, no. 4, pp. 245–256.

    Article  Google Scholar 

  17. Dzhashitov, V.E., and Pankratov, V.M., Control of Temperature Fields of a FOG-based Strapdown INS, Izv. RAN. Teoriya i sistemy upravleniya, 2014, no. 4, pp. 565–575.

    MATH  Google Scholar 

  18. Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Metody rascheta teplovogo rezhima priborov (Methods for Calculating the Thermal Conditions of Devices), Moscow: Radio i svyaz’, 1990.

    Google Scholar 

  19. Ingberman, M.I., Fromberg, E.M., and Graboi L.P., Termostatirovanie v tekhnike sviyazi (Thermostating in Communication Technology), Moscow: Svyaz’, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Golikov.

Additional information

Original Russian Text © A.V. Golikov, V.M. Pankratov, M.V. Efremov, 2017, published in Giroskopiya i Navigatsiya, 2017, No. 4, pp. 60–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golikov, A.V., Pankratov, V.M. & Efremov, M.V. Analysis of Temperature Fields in Angular Velocity Measurement Units on Fiber-Optic Gyros. Gyroscopy Navig. 9, 116–123 (2018). https://doi.org/10.1134/S2075108718020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108718020050

Keywords

Navigation