Skip to main content
Log in

Analysis of accuracy requirements for an inertial navigation system in synthetic aperture radars

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

This paper describes the effect of trajectory signal phase distortion on the image received by a millimeter-wave automobile synthetic aperture radar (SAR). Calculations of the requirements for the errors of the sensors included in a strapdown inertial system that provide the resultant image with acceptable quality are given. Parameters of different grade inertial sensors are analyzed; recommendations for choosing inertial sensors depending on SAR operating conditions and required resolution are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akliouat, H., Smara, Y., and Bouchemakh, L. Synthetic aperture radar image formation process: application to a region of north Algeria, Envisat Symposium, April 23–27, Montreux, Switzerland, 2007, pp. 76–79.

    Google Scholar 

  2. Wang, L. and Zhang, Y., An improved algorithm of range-Doppler for air-borne synthetic aperture radar, Proc. Int. Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), December 16–18, Changchun, China, 2011, pp. 1713–1716.

    Chapter  Google Scholar 

  3. Mirbolouk, S., Maghsoodi, M., and Torabi M., Synthetic aperture radar data processing, Int. J. Advanced Research in Computer Science and Software Engineering, 2013, vol. 3, Is. 5, pp. 805–809.

    Google Scholar 

  4. Efimov, A.V., Karpov, O.A., and Tolstov, E.F., Methods and algorithms for designing synthetic aperture radar in the transition to ultra-wideband probing signals. Moscow: GUP NPTs Spurt, 2009, http://www.mivlgu.ru/conf/armand2012/pdf/S3_5.pdf.

    Google Scholar 

  5. Mittermayer, J. and Moreira, A., Spotlight SAR data processing using the frequency scaling algorithm, IEEE Transactions on Geoscience and Remote Sensing, 1999, vol. 37, no. 5, pp. 2198–2214.

    Article  Google Scholar 

  6. Neronskii, L.B., Mikhailov, V.F., and Bragin, I.V., Mikrovolnovaya apparatura distantsionnogo zondirovaniya poverkhnosti Zemli i atmosfery. Radiolokatory s sintezirovannoi aperturoi antenny: Uchebnoe posobie (Microwave Equipment for Remote Sensing of the Earth Surface and Atmosphere. Synthetic Aperture Radars: Tutorial), St. Petersburg: SPbGUAP, 1999, Part 2.

    Google Scholar 

  7. Radiolokatsionnye sistemy vozdushnoi razvedki, deshifrirovanie radiolokatsionnykh izobrazhenii: Uchebnoe posobie (Radar Airborne Surveillance Systems, Interpretation of Radar Images: Tutorial), Shkol’nyi, L.A., Ed., Isdatel’stvo VVIA prof. N.E. Zhukovskogo, 2008.

  8. Aviatsionnye sistemy radiovideniya (Airborne Radiowave Imaging Systems), Kondratenkov, G.S., Ed., Moscow: Radiotekhnika, 2015.

  9. Borges, G.A., Lanari, A.P., and Ishihara, J.Y., An IMU/magnetometer/GPS-based localization system using correlated Kalman filtering, https://www.researchgate.net/publication/228865673_An_IMUMagnetometerGPS-based_localization_system_using_ correlated_Kalman_filtering.

  10. Sokolovic, V., Dikic, G., and Stancic R., Integration of INS, GPS, magnetometer and barometer for improving accuracy navigation of the vehicle, Defence Science Journal, 2013, vol. 63, no. 5, pp. 451–455.

    Article  Google Scholar 

  11. Zhang, P., Gu, J., Milios, E.E., and Huynh, P., Navigation with IMU/GPS/digital compass with unscented Kalman filter, Int. Conf. on Mechatronics & Automation, Niagara Falls, Canada, 2005, pp. 1497–1502.

    Google Scholar 

  12. Vasil’ev, P.V., Meleshko, A.V., and Pyatkov, V.V., Improving the accuracy of a correctable inertial navigation system, Izvestiya vuzov. Priborostroenie, 2014, vol. 57, no. 12, pp. 15–21.

    Google Scholar 

  13. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli: Ucheb. posobie dlya vuzov (Radiowave Imaging. Remote Sensing of the Earth Surface: Tutorial), Kondratenkov, G.S., Ed., Moscow: Radiotekhnika, 2005.

  14. Doerry, A.W., Motion Measurement for Synthetic Aperture Radar, http://prod.sandia.gov/techlib/access-control.cgi/2015/1520818.pdf

  15. Matveev, V.V., Engineering analysis of errors of a strapdown inertial navigation system, Izvestiya TulGU. Tekhnicheskie nauki, 2014, no. 9, Part 2, pp. 251–267.

    Google Scholar 

  16. Woodman, O.J., An Introduction to Inertial Navigation, 2007. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.html

    Google Scholar 

  17. Fong, W.T., Ong, S.K., and Nee, A.Y., Methods for infield user calibration of an inertial measurement unit without external equipment, Measurement Science and Technology, 2008, no. 19, pp. 11–11.

    Article  Google Scholar 

  18. Artese, G. and Trecroci, A., Calibration of a low cost MEMS INS sensor for an integrated navigation system, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, vol. XXXVII, Part B5, pp. 877–881.

    Google Scholar 

  19. Nebot, E. and Durrant-Whyte, H., Initial calibration and alignment of low cost inertial navigation units for land vehicle applications, Journal of Robotics Systems, 1999, vol. 16, no. 2, pp. 81–92.

    Article  MATH  Google Scholar 

  20. Shavrin, V.V, Konakov, A.S., and Tislenko, V.I., Calibration of MEMS accelerometers and angular rate sensors in strapdown inertial navigation systems, Doklady Tomskogo gos. universiteta sistem upr. i radioelektroniki, 2012, no. 2(25), Part 2, pp. 265–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Velikanova.

Additional information

Original Russian Text © E.P. Velikanova, A.A. Geltser, Zh.T. Erdyneev, N.V. Panokin, 2016, published in Giroskopiya i Navigatsiya, 2016, No. 4, pp. 47–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velikanova, E.P., Geltser, A.A., Erdyneev, Z.T. et al. Analysis of accuracy requirements for an inertial navigation system in synthetic aperture radars. Gyroscopy Navig. 8, 129–135 (2017). https://doi.org/10.1134/S2075108717020110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108717020110

Navigation