Skip to main content
Log in

Sorption-Enhanced Water Gas Shift Reaction over a Mechanical Mixture of the Catalyst Pt/Ce0.75Zr0.25O2 and the Sorbent NaNO3/MgO

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Results of studying the sorption-enhanced water gas shift reaction over a mechanical mixture of grains of 5 wt % Pt/Ce0.75Zr0.25O2 catalyst and 10 wt % NaNO3/MgO sorbent are presented. It is shown that pure magnesium oxide sorbs virtually no СО2 under model conditions, while its promotion with NaNO3 substantially improves the dynamic sorption capacity in the 300–350°C range of temperatures with a maximum at 320°C. The catalyst shows high activity and selectivity in the water gas shift reaction for a model mixture (CO, 11.6; H2, 61; H2O, 27.4 vol %). The concentration of CO at the outlet from the reactor is less than 1 vol % in the 220–400°C range of temperatures (the minimum is 0.3 vol % at 240°C) with СН4 at the temperatures below 320°C (0.61 vol % at this point). Using this sorbent in mixtures with a catalyst in the sorption-enhanced water gas shift reaction at 320°C substantially reduces its sorption capacity, due probably to the full conversion of NaNO3 into Na2CO3 that is not completely decomposed at the stage of regeneration. This nevertheless allows the outlet СО and СН4 concentrations to be halved, relative to values observed at this temperature in experiments with no sorbent: 6.1 × 10−4 and 8.2 × 10−2 vol % per dry gas basis at the middle of the first adsorption cycle. Prospects for using this approach in the sorption-enhanced water gas shift reaction and the need for further studies on improving the capacity and stability of the presented sorbents are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. The Fuel Cell Industry Review, 2019. https://fuelcellindustryreview.com/archive/TheFuelCellIndustryReview2019.pdf. Cited October 7, 2022.

  2. Apostolou, D. and Xydis, G., Renewable Sustainable Energy Rev., 2019, vol. 113, paper no. 109292. https://doi.org/10.1016/j.rser.2019.109292

  3. Pinaeva, L.G. and Noskov, A.S., Catal. Ind., 2022, vol. 14, no. 1, pp. 66–85.

    Article  Google Scholar 

  4. Wu, Y.-J., Li, P., Yu, J.-G., Cunha, A.F., and Rodrigues, A.E., Rev. Chem. Eng., 2016, vol. 32, pp. 271–303.

    CAS  Google Scholar 

  5. Buelens, L.C., Galvita, V.V., Poelman, H., Detavernier, C., and Marin, G.B., Science, 2016, vol. 354, no. 6311, pp. 449–452. https://doi.org/10.1126/science.aah7161

    Article  CAS  Google Scholar 

  6. Poelman, H. and Galvita, V.V., Catalysts, 2021, vol. 11, no. 2, p. 266. https://doi.org/10.3390/catal11020266

    Article  CAS  Google Scholar 

  7. Liu, M., Vogt, C., Chaffee, A.L., and Chang, S.L.Y., J. Phys. Chem. C, 2013, vol. 117, pp. 17514–17520.

    Article  CAS  Google Scholar 

  8. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., and Zhong, Z., Energy Environ. Sci., 2014, vol. 7, pp. 3478–3518.

    Article  CAS  Google Scholar 

  9. Hu, Y., Guo, Y., Sun, J., Li, H., and Liu, W., J. Mater. Chem. A, 2019, vol. 7, pp. 20103–20120.

    Article  CAS  Google Scholar 

  10. Mutch, G.A., Shulda, S., McCue, A.J., Menart, M.J., Ciobanu, C.V., Ngo, C., Anderson, J.A., Richards, R.M., and Vega-Maza, D., J. Am. Chem. Soc., 2018, vol. 140, pp. 4736–4742.

    Article  CAS  Google Scholar 

  11. Hu, J., Zhu, K., Chen, L., Kübel, C., and Richards, R., J. Phys. Chem. C, 2007, vol. 111, pp. 12038–12044.

    Article  CAS  Google Scholar 

  12. Ueda, W., Yokoyama, T., Moro-Oka, Y., and Ikawa, T., Chem. Lett., 1985, vol. 14, pp. 1059–1062.

    Article  Google Scholar 

  13. Boon, J., Coenen, K., van Dijk, E., Cobden, P., Gallucci, F., and van Sint Annaland, M., Adv. Chem. Eng., 2017, vol. 51, pp. 1–96.

    Article  CAS  Google Scholar 

  14. Lee, C.H. and Lee, K.B., Appl. Energy, 2017, vol. 205, pp. 316–322. https://doi.org/10.1016/j.apenergy.2017.07.119

    Article  CAS  Google Scholar 

  15. Li, Y., Kottwitz, M., Vincent, J.L., Enright, M.J., Liu, Z., Zhang, L., Huang, J., Senanayake, S.D., Yang, W.C.D., Crozier, P.A., Nuzzo, R.G., and Frenkel, A.I., Nat. Commun., 2021, vol. 12, paper no. 914.

  16. Gorlova, A.M., Simonov, P.A., Stonkus, O.A., Pakharukova, V.P., Snytnikov, P.V., and Potemkin, D.I., Kinet. Catal., 2021, vol. 62, pp. 812–819.

    Article  CAS  Google Scholar 

  17. Yuan, K., Sun, X.-C., Yin, H.-J., Zhou, L., Liu, H.-C., Yan, C.-H., and Zhang, Y.-W., J. Energy Chem., 2022, vol. 67, pp. 241–249.

    Article  CAS  Google Scholar 

  18. Panagiotopoulou, P., Papavasiliou, J., Avgouropoulos, G., Ioannides, T., and Kondarides, D.I., Chem. Eng. J., 2007, vol. 134, pp. 16–22.

    Article  CAS  Google Scholar 

  19. Harada, T., Simeon, F., Hamad, E.Z., and Hatton, T.A., Chem. Mater., 2015, vol. 27, no. 6, pp. 1943–1949. https://doi.org/10.1021/cm503295g

    Article  CAS  Google Scholar 

  20. Shkatulov, A.I., Kim, S.T., Miura, H., Kato, Y., and Aristov, Yu.I., Energy Convers. Manage., 2019, vol. 185, pp. 473–481.

    Article  CAS  Google Scholar 

  21. Park, E.D., Lee, D., and Lee, H.C., Catal. Today, 2009, vol. 139, pp. 280–290.

    Article  CAS  Google Scholar 

  22. Gao, W., Vasiliades, M.A., Damaskinos, C.M., Zhao, M., Fan, W., Wang, Q., Reina, T.R., and Efstathiou, A.M., Environ. Sci. Technol., 2021, vol. 55, pp. 4513–4521.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation as part of project no. 21-79-10377 (A.M. Gorlova, I.E. Karmadonova, V.S. Derevshchikov, and D.I. Potemkin).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Gorlova, I. E. Karmadonova, V. S. Derevshchikov, V. N. Rogozhnikov, P. V. Snytnikov or D. I. Potemkin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlova, A.M., Karmadonova, I.E., Derevshchikov, V.S. et al. Sorption-Enhanced Water Gas Shift Reaction over a Mechanical Mixture of the Catalyst Pt/Ce0.75Zr0.25O2 and the Sorbent NaNO3/MgO. Catal. Ind. 14, 349–356 (2022). https://doi.org/10.1134/S2070050422040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422040031

Keywords:

Navigation