Skip to main content
Log in

Creating a Heterohomogeneous Catalytic System for the Alkylation of Benzene with Ethylene through the Reaction beteen Carbon Tetrachloride and Aluminum Alloys

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The in situ formation of a catalytic heterohomogeneous system containing Al–M alloy (M is Ni, Co, Cu) and Al(M)/Cl complex in a benzene–ethylene medium at a temperature of 80°C and a pressure of 0.2–0.3 MPa is studied. The characteristic patterns of interaction between Al–M alloys activated with a liquid metal Ga–In eutectic and a chlorinating agent (CCl4) with the formation of catalytically active metal–aluminum chloride Al(M)/Cl complexes are established. Results from spectrokinetic measurements show the order of the reactivity of activated alloys with respect to excess CCl4 is Al–Cu ≈ Al–Ni > Al > Al–Co. The highest catalytic activity is displayed by nickel–aluminum chloride complexes whose selectivity toward ethylbenzene is 48%. Data from IR and UV-VIS spectroscopy show that the structure and composition of metal chloride complexes formed in situ in the aromatic reaction medium is determined by a combination of coupled ionic pairs \([{\text{AlC}}{{{\text{l}}}_{4}}]_{{{\text{tetr}}}}^{ - }{\text{/[NiC}}{{{\text{l}}}_{{\text{6}}}}]_{{{\text{oct}}}}^{{4-}}\) and \(\left[ {{\text{AlC}}{{{\text{l}}}_{{\text{4}}}}} \right]_{{{\text{tetr}}}}^{ - }/\left[ {{\text{CuC}}{{{\text{l}}}_{{\text{2}}}}} \right]_{{{\text{lin}}}}^{ - }\), which are stabilized by (C6H5)3C+ carbocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Singhal, S., Agarwal, S., Singh, M., Rana, S., Arora, S., and Singhal, N., J. Mol. Liq., 2019, vol. 285, pp. 299–313.

    Article  CAS  Google Scholar 

  2. Yan, G.X., Wang, A., Wachs, I.E., and Baltrusaitis, J., Appl. Catal., A, 2019, vol. 572, pp. 210–225.

  3. Lavrenov, A.V., Bogdanets, E.N., and Duplyakin, V.K., Katal. Prom-sti, 2009, no. 1, pp. 28–38.

  4. Li, R., Xing, S., Zhang, S., and Han, M., RSC Adv., 2020, vol. 10, no. 17, pp. 10006–10016.

    Article  CAS  Google Scholar 

  5. Olivier-Bourbigou, H., Magna, L., and Morvan, D., Appl. Catal, A, 2010, vol. 373, pp. 1–56.

  6. Shi, Y., Xing, E., Xie, W., Zhang, F., Mu, X., and Shu, X., J. Mol. Catal. A: Chem., 2016, vols. 418/419, pp. 86–94.

    Article  Google Scholar 

  7. Rao, S.M., Saraci, E., Glaser, R., and Coppens, M.O., Chem. Eng. J., 2017, vol. 329, pp. 45–55.

    Article  CAS  Google Scholar 

  8. Wang, Y., Gao, Y., Xie, S., Liu, S., Chen, F., Xin, W., Zhu, X., Li, X., Jiang, N., and Xu, L., Catal. Today, 2018, vol. 316, pp. 71–77.

    Article  CAS  Google Scholar 

  9. Polubentseva, M.F., Duganova, V.V., and Mikhailenko, G.A., Russ. J. Gen. Chem., 1996, vol. 66, no. 4, pp. 614–618.

    Google Scholar 

  10. Trenikhin, M.V., Kozlov, A.G., Nizovskii, A.I., Drozdov, V.A., Lavrenov, A.V., Bubnov, A.V., Fine-vich, V.P., and Duplyakin, V.K., Russ. J. Gen. Chem., 2007, vol. 77, no. 12, pp. 2320–2327.

    Article  CAS  Google Scholar 

  11. Fischman, J., Godart, P., and Hart, D., Int. J. Hydrogen Energy, 2020, vol. 45, no. 35, pp. 17118–17130.

    Article  CAS  Google Scholar 

  12. Slocum, J.T., Eagar, T.W., Taylor, R., and Hart, D.P., Appl. Energy, 2020, vol. 279, paper no. 115712.

  13. Arbuzov, A.B., Drozdov, V.A., Likholobov, V.A., Trenikhin, M.V., Talsi, V.P., and Kudrya, E.N., Kinet. Catal., 2010, vol. 51, no. 3, pp. 354–358.

    Article  CAS  Google Scholar 

  14. Arbuzov, A.B., Drozdov, V.A., Shlyapin, D.A., and Lavrenov, A.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2018, vol. 61, nos. 9/10, pp. 64–69.

    CAS  Google Scholar 

  15. Arbuzov, A.B., Shilova, A.V., Trenikhin, M.V., and Drozdov, V.A., Chem. Sustainable Dev., 2017, vol. 25, no. 2, pp. 133–137.

    Google Scholar 

  16. Arbuzov, A.B., Drozdov, V.A., Trenikhin, M.V., Leont’eva, N.N., Shilova, A.V., Kireeva, T.V., and Lavrenov, A.V., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, pp. 587–592.

    Article  CAS  Google Scholar 

  17. Arbuzov, A.B., Drozdov, V.A., Kazakov, M.O., Lavrenov, A.V., Trenikhin, M.V., and Likholobov, V.A., Kinet. Catal., 2012, vol. 53, no. 3, pp. 357–362.

    Article  CAS  Google Scholar 

  18. Arbuzov, A.B., Drozdov, V.A., Talsi, V.P., Babenko, A.V., Izmailov, R.R., and Yurpalov, V.L., AIP Conf. Proc., 2019, vol. 2143, paper no. 020044.

  19. Arbuzov, A.B., Drozdov, V.A., and Talsi, V.P., AIP Conf. Proc., 2020, vol. 2301, paper no. 040002.

  20. Arbuzov, A.B., Drozdov, V.A., and Talsi, V.P., AIP Conf. Proc., 2020, vol. 2301, paper no. 040001.

  21. Arbuzov, A.B., Drozdov, V.A., Leont’eva, N.N., Shilova, A.V., Kireeva, T.V., Trenikhin, M.V., and Lavrenov, A.V., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, pp. 653–657.

    Article  CAS  Google Scholar 

  22. Arbuzov, A.B., Drozdov, V.A., Trenikhin, M.V., Muromtsev, I.V., Izmailov, R.R., and Kireeva, T.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 12, pp. 1998–2003.

    Article  CAS  Google Scholar 

  23. Drozdov, V.A., Arbuzov, A.B., Trenikhin, M.V., Lavrenov, A.V., Kazakov, M.O., and Likholobov, V.A., Chem. Sustainable Dev., 2011, vo. 19, no. 1, pp. 45–52.

    Google Scholar 

  24. Pulletikurthi, G., Bödecker, B., Borodin, A., Weidenfeller, B., and Endres, F., Prog. Nat. Sci.: Mater. Int., 2015, vol. 25, no. 6, pp. 603–611.

    Article  CAS  Google Scholar 

  25. Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984.

    Google Scholar 

  26. Estager, J., Holbrey, J.D., and Swadźba-Kwaśny, M., Chem. Soc. Rev., 2014, vol. 43, no. 3, pp. 847–886.

    Article  CAS  Google Scholar 

  27. Roeper, D.F., Pandya, K.I., Cheek, G.T., and O’Grady, W.E., J. Electrochem. Soc., 2011, vol. 158, no. 3, pp. F21–F28.

    Article  CAS  Google Scholar 

  28. Eide, O.K., Ystenes, M., Støvneng, J.A., and Eilertsen, J.L., Vib. Spectrosc., 2007, vol. 43, no. 1, pp. 210–216.

    Article  CAS  Google Scholar 

  29. Sovremennye problemy khimii karbonievykh ionov (Contemporary Problems of Carbonium Ions Chemistry) Koptyug, V.A, Ed., Novosibirsk: Nauka, 1975.

  30. Makarychev, Yu.B., Akimov, A.G., and Azarov, A.A., Poverkhn.: Fiz., Khim., Mekh., 1985, no. 7, pp. 143–147.

  31. Domen, K. and Chuang, T.J., J. Am. Chem. Soc., 1987, vol. 109, no. 17, pp. 5288–5289.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to engineer S.N. Evdokimov and chief engineer E.N. Kudrya for participating in our NMR and GC/MS studies.

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of a state taks to the Boreskov Institute of Catalysis, project no. AAAA-A21-121011890074-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Arbuzov, V. A. Drozdov, A. V. Lavrenov or N. N. Leont’eva.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzov, A.B., Drozdov, V.A., Lavrenov, A.V. et al. Creating a Heterohomogeneous Catalytic System for the Alkylation of Benzene with Ethylene through the Reaction beteen Carbon Tetrachloride and Aluminum Alloys. Catal. Ind. 14, 363–368 (2022). https://doi.org/10.1134/S207005042204002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005042204002X

Keywords:

Navigation