Skip to main content
Log in

Impregnating Noble Metals into the Polymer Matrix of Super Cross-Linked Polystyrene

  • GENERAL PROBLEMS OF CATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Commercial super cross-linked polystyrene (SPS) is a promising support for creating heterogeneous catalysts designed for processes of fine organic synthesis. Results from years of studying the creation of heterogeneous Pd-, Pt-, and Ru-containing catalysts based on SPS of grades MN100 and MN270. Data are presented from characterizing SPS and catalysts based on them using a complex of physical and physicochemical means of analysis. It is shown that commercial SPS can be used to synthesize catalysts in the form of spherical grains or preliminarily ground powders. Along with the nature of a metal catalyst precursor, the form of an SPS has a strong effect on the distribution of Pd, Pt, and Ru compounds and the size of metal-containing nanoparticles formed in the polymer’s medium. The catalysts in a hydrogen flow at a temperature of 300°C on the surface chemical composition of powder MN100 samples impregnated w Pd, Pt, and Ru compounds is considered for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Dawson, R., Cooper, A.I., and Adams, D.J., Prog. Polym. Sci., 2012, vol. 37, pp. 530–563.

    Article  CAS  Google Scholar 

  2. Jiang, J.-X. and Cooper, A.I., Top. Curr. Chem., 2010, vol. 293, pp. 1–33.

    CAS  PubMed  Google Scholar 

  3. McKeown, N.B. and Budd, P.M., Macromolecules, 2010, vol. 43, pp. 5163–5176.

    Article  CAS  Google Scholar 

  4. Maly, K.E., J. Mater. Chem., 2009, vol. 19, pp. 1781–1787.

    Article  CAS  Google Scholar 

  5. Kaur, P., Hupp, J.T., and Nguyen, S.T., ACS Catal., 2011, vol. 1, pp. 819–835.

    Article  CAS  Google Scholar 

  6. Moore, J.C., J. Polym. Sci., 1964, vol. A, pp. 835–843.

  7. Dell’Anna, M.M., Romanazzi, G., and Mastrorilli, P., Curr. Org. Chem., 2013, vol. 17, pp. 1236–1273.

    Article  Google Scholar 

  8. Dabbawala, A.A., Mishra, D.K., and Hwang, J.-S., Catal. Today, 2016, vol. 265, pp. 163–173.

    Article  CAS  Google Scholar 

  9. Wang, K., Jia, Z., Yang, X., Wang, L., Gu, Y., and Tan, B., J. Catal., 2017, vol. 348, pp. 168–176. https://doi.org/10.1016/j.jcat.2017.02.024

    Article  CAS  Google Scholar 

  10. Huang, J., Huang, K., and Yan, C., J. Hazard. Mater., 2009, vol. 167, pp. 69–74.

    Article  CAS  Google Scholar 

  11. Demirocak, D.E., Ram, M.K., Srinivasan, S.S., Kumar, A., Goswami, D.Y., and Stefanakos, E.K., Int. J. Hydrogen Energy, 2012, vol. 37, pp. 12402–12410.

    Article  CAS  Google Scholar 

  12. Tsyurupa, M.P. and Davankov, V.A., React. Funct. Polym., 2006, vol. 66, pp. 768–779.

    Article  CAS  Google Scholar 

  13. Lyubimov, S.E., Vasil’ev, A.A., Korlyukov, A.A., Ilyin, M.M., Pisarev, S.A., Matveev, V.V., Chalykh, A.E., Zlotin, S.G., and Davankov, V.A., React. Funct. Polym., 2009, vol. 69, pp. 755–758.

    Article  CAS  Google Scholar 

  14. Salam, N., Mondal, P., Mondal, J., Roy, A.S., Bhaumik, A., and Islam, S.M., RSC Adv., 2012, vol. 2, pp. 6464–6477.

    Article  CAS  Google Scholar 

  15. Dabbawala, A.A., Sudheesh, N., and Bajaj, H.C., Dalton Trans., 2012, vol. 41, pp. 2910–2917.

    Article  CAS  Google Scholar 

  16. Salam, N., Kundu, S.K., Roy, A.S., Mondal, P., Ghosh, K., Bhaumik, A., and Islam, S.M., Dalton Trans., 2014, vol. 43, pp. 7057–7068.

    Article  CAS  Google Scholar 

  17. Xu, S., Luo, Y., and Tan, B., Macromol. Rapid. Commun., 2013, vol. 34, pp. 471–484.

    Article  CAS  Google Scholar 

  18. Li, B., Gong, R., Wang, W., Huang, X., Zhang, W., Li. H., Hu. C., and Tan, B., Macromolecules, 2011, vol. 44, pp. 2410–2414.

    Article  CAS  Google Scholar 

  19. Luo, Y., Li, B., Wang, W., Wu, K., and Tan, B., Adv. Mater., 2012, vol. 24, pp. 5703–5707.

    Article  CAS  Google Scholar 

  20. Li, B., Guan, Z., Wang, W., Yang, X., Hu, J., Tan, B., and Li, T., Adv. Mater., 2012, vol. 24, pp. 3390–3395.

    Article  CAS  Google Scholar 

  21. Dawson, R., Stockel, E., Holst, J.R., Adams, D.J., and Cooper, A.I., Energy Environ. Sci., 2011, vol. 4, pp. 4239–4245.

    Article  CAS  Google Scholar 

  22. Tsyurupa, M.P., Blinnikova, Z.K., Davidovich, Yu.A., Lyubimov, S.E., Naumkin, A.V., and Davankov, V.A., React. Funct. Polym., 2012, vol. 72, pp. 973–982.

    Article  CAS  Google Scholar 

  23. Davankov, V.A. and Tsyurupa, M.P., React. Polym., 1990, vol. 13, pp. 27–42.

    Article  CAS  Google Scholar 

  24. Bronshtein, L.M., Sidorov, S.N., and Valetskii, P.M., Russ. Chem. Rev., 2004, vol. 73, no. 5, pp. 501–515. https://doi.org/10.1070/RC2004v073n05ABEH000782

    Article  CAS  Google Scholar 

  25. Bronstein, L.M., Matveeva, V.G., and Sulman, E.M., in Nanoparticles and Catalysis, Astruć, D., Ed., Weinheim: Wiley-VCH, 2007, pp. 93–127.

    Google Scholar 

  26. Bronstein, L.M., in Encyclopedia of Nanoscience and Nanotechnology, Halwa, H.S., Ed., Stevenson Ranch, CA: American Scientific Publishes, 2004, vol. 7, pp. 193–206.

    Google Scholar 

  27. Cortina, J.L., Kautzmann, R.M., Gliese, R., and Sampaio, C.H., React. Funct. Polym., 2004, vol. 60, pp. 97–107.

    Article  CAS  Google Scholar 

  28. Sulman, E.M., Nikoshvili, L., Matveeva, V.G., Tyamina, I., Sidorov, A.I., Bykov, A.V., Demidenko, G.N., Stein, B.D., and Bronstein, L.M., Top. Catal., 2012, vol. 55, pp. 492–497.

    Article  CAS  Google Scholar 

  29. Doluda, V.Y., Sulman, E.M., Matveeva, V.G., Sulman, M.G., Lakina, N.V., Sidorov, A.I., Valetsky, P.M., and Bronstein, L.M., Chem. Eng. J., 2007, vol. 134, pp. 256–261.

    Article  CAS  Google Scholar 

  30. Sapunov, V.N., Grigoryev, M.Ye., Sulman, E.M., Konyaeva, M.B., and Matveeva, V.G., J. Phys. Chem. A, 2013, vol. 117, pp. 4073–4083.

    Article  CAS  Google Scholar 

  31. Protsenko, I.I., Abusuek, D.A., Nikoshvili, L.Zh., Bykov, A.V., Matveeva, V.G., and Sulman, E.M., Catal. Ind., 2018, vol. 10, no. 4, pp. 301–312. https://doi.org/10.1134/S2070050418040128

    Article  Google Scholar 

  32. Bykov, A.V., Alekseeva, D.V., Demidenko, G.N., Vasiliev, A.L., Nikoshvili, L., and Kiwi-Minsker, L., Catalysts, 2020, vol. 10, no. 11, p. 1362. https://doi.org/10.3390/catal10111362

  33. Nikoshvili, L.Zh., Nemygina, N.A., Khudyakova, T.E., Tiamina, I.Yu., Bykov, A.V., Stein, B.D., Sulman, E.M., and Kiwi-Minsker, L., J. Nanomater., 2019, vol. 2019, Article ID 6262176. https://doi.org/10.1155/2019/6262176

  34. Nikoshvili, L., Bakhvalova, E.S., Bykov, A.V., Sidorov, A.I., Vasiliev, A.L., Matveeva, V.G., Sulman, M.G., Sapunov, V.N., and Kiwi-Minsker, L., Processes, 2020, vol. 8, no. 12, p. 1653. https://doi.org/10.3390/pr8121653

  35. Nikoshvili, L.Zh., Sulman, E.M., and Kiwi-Minsker, L., Chem. Eng. Trans., 2019, vol. 76, pp. 859–864.

    Google Scholar 

  36. Nemygina, N.A., Nikoshvili, L.Zh., Bykov, A.V., Sidorov, A.I., Molchanov, V.P., Sulman, M.G., Tiami-na, I.Yu., Stein, B.D., Matveeva, V.G., Sulman, E.M., and Kiwi-Minsker, L., Org. Process Res. Dev., 2016, vol. 20, pp. 1453–1460.

    Article  CAS  Google Scholar 

  37. Nemygina, N.A., Nikoshvili, L.Zh., Matveeva, V.G., Sulman, M.G., Sulman, E.M., and Kiwi-Minsker, L., Top. Catal., 2016, vol. 59, pp. 1185–1195.

    Article  CAS  Google Scholar 

  38. Sulman, E., Bronstein, L., Matveeva, V., Sulman, M., Lakina, N., Doluda, V., and Valetsky, P., in Nanocatalysis, Murzin, D.Yu., Ed., Kerala, India: Research Signpost, 2006, pp. 51–98.

    Google Scholar 

  39. Adrio, L.A., Nguyen, B.N., Guilera, G., Livingston, A.G., and Hii, K.K.M., Catal. Sci. Technol., 2012, vol. 2, pp. 316–323.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to L.M. Bronstein (Department of Chemistry, University of Indiana, United States); B.D. Stein (Department of Biology, University of Indiana, United States); and A.L. Vasil’eva, Candidate in Physics and Mathematics (Laboratory of Electron Microscopy, Kurchatov Center of Convergent Nano-, Bio-, Info-, Cognitive, and Socio-Humanistic Studies and Technologies, National Research Center Kurchatov Institute) for their help in our TEM and STEM studies.

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00386.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bykov, L. Zh. Nikoshvili, G. N. Demidenko, M. G. Sul’man or L. Kiwi-Minsker.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.V., Nikoshvili, L.Z., Demidenko, G.N. et al. Impregnating Noble Metals into the Polymer Matrix of Super Cross-Linked Polystyrene. Catal. Ind. 14, 157–170 (2022). https://doi.org/10.1134/S2070050422020027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422020027

Keywords:

Navigation