Skip to main content
Log in

Catalytic Properties and Chemical Stability of Potassium Polyferrites with Additives of Quadruply Charged Cations

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A study is performed of the effect of additives of quadruply charged ions on the composition, chemical stability, and catalytic properties of samples of potassium polyferrites with a β″-alumina type structure of \({{{\text{K}}}_{{\text{2}}}}{\text{Fe}}_{{{\text{1 + }}q}}^{{{\text{II}}}}{\text{Fe}}_{{{\text{10}} - {\text{2}}q}}^{{{\text{III}}}}{\text{Me}}_{q}^{{{\text{IV}}}}{{{\text{O}}}_{{{\text{17}}}}}\), where Me is Ce, Ti, or Zr, and q = 0–1.0. The mechanism is determined for the effect produced by the additives of quadruply charged cations on the activity, selectivity, and corrosion resistance of β″-potassium polyferrite is determined. Polyferrites doped with quadruply charged cations are characterized by a drop in the specific rate of styrene formation and an increase in ethyl benzene dehydrogenation selectivity. The destabilizing effect of titanium additives is revealed. It is expressed in facilitating the emission of an alkali metal from the crystal lattice of polyferrite. Cerium additives result in the destruction of the polyferrite structure due to the reduction of Ce4+→ Be3+ for values of parameter q greater than 0.6. Zirconium additives do not reduce the corrosion resistance of ferrite systems under the conditions of dehydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Trebala, M., Bieniasz, W., Drozdek, M., Molenda, M., Kotarba, A., and Sojka, Z., Funct. Mater. Lett., 2011, vol. 4, no. 2, pp. 179–182.

    Article  CAS  Google Scholar 

  2. Serafin, I., Kotarba, A., Grzywa, M., Sojka, Z., Bińczycka, H., and Kuśtrowski, P., J. Catal., 2006, vol. 239, no. 1, pp. 137–144.

    Article  CAS  Google Scholar 

  3. Bieniasz, W., Trębala, M., Sojka, Z., and Kotarba, A., Catal. Today, 2010, vol. 154, nos. 3–4, pp. 224–228.

  4. Trebala, M., Bieniasz, W., Holmlid, L., Molenda, M., and Kotarba, A., Solid State Ionics, 2011, vol. 192, no. 1, pp. 664–667.

    Article  CAS  Google Scholar 

  5. Dvoretskii, N.V., Yun, V.V., Kotel’nikov, G.R., et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1990, vol. 33, no. 8, pp. 3–9.

    CAS  Google Scholar 

  6. Dvoretskii, N.V., Stepanov, E.G., and Yun, V.V., Izv. Vyssh. Uchebn. Zaved., Neorg. Mater., 1991, vol. 27, no. 6, pp. 1265–1268.

    CAS  Google Scholar 

  7. Kotarba, A., Rożek, W., Serafin, I., and Sojka, Z., J. Catal., 2007, vol. 247, no. 2, pp. 238–244.

    Article  CAS  Google Scholar 

  8. Li, Z. and Shanks, B.H., Appl. Catal., A, 2011, vol. 405, nos. 1–2, pp. 101–107.

  9. Kotarba, A., Bieniasz, W., Kuśtrowski, P., Stadnicka, K., and Sojka, Z., Appl. Catal., A, 2011, vol. 407, nos. 1–2, pp. 100–105.

  10. Lamberov, A.A., Gil’manov, Kh.Kh., Dement’eva, E.V., and Kuzmina, O.V., Catal. Ind., 2012, vol. 5, no. 1, pp. 50–60.

    Article  Google Scholar 

  11. Abe, K., Ohshima, M., Kurokawa, H., and Miura, H., J. Jpn. Pet. Inst., 2010, vol. 53, no. 2, pp. 89–94.

    Article  CAS  Google Scholar 

  12. Abe, K., Kano, Yu., Ohshima, M., Kurokawa, H., and Miura, H., J. Jpn. Pet. Inst., 2011, vol. 54, no. 5, pp. 338–343.

    Article  CAS  Google Scholar 

  13. Kano, Yu., Ohshima, M., Kurokawa, H., and Miura, H., React. Kinet., Mech. Catal., 2013, vol. 109, no. 1, pp. 29–41.

    Article  CAS  Google Scholar 

  14. Dvoretskii, N.V. and Anikanova, L.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 9, pp. 64–66.

    CAS  Google Scholar 

  15. Anikanova, L.G. and Dvoretskii, N.V., Catal. Ind., 2013, vol. 5, no. 1, pp. 74–79.

    Article  Google Scholar 

  16. Anikanova, L.G., Malysheva, Z.G., Sudzilovskaya, T.N., and Dvoretskii, N.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 10, pp. 103–109.

    Article  CAS  Google Scholar 

  17. Dvoretskii, N.V., Anikanova, L.G., and Malysheva, Z.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2018, vol. 61, no. 6, pp. 61–68.

    Article  Google Scholar 

  18. Anikanova, L.G. and Dvoretskii, N.V., Catal. Ind., 2020, vol. 12, no. 3, pp. 201–206.

    Article  Google Scholar 

  19. Anikanova, L.G. and Dvoretskii, N.V., Catal. Ind., 2016, vol. 8, no. 2, pp. 145–151.

    Article  Google Scholar 

  20. Bugaenko, L.T., Ryabykh, S.M., and Bugaenko, A.L., Vestn. Mosk. Univ., Ser. 2: Khim., 2008, vol. 49, no. 6, pp. 363–384.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L.G. Anikanova or N.V. Dvoretskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikanova, L., Dvoretskii, N. Catalytic Properties and Chemical Stability of Potassium Polyferrites with Additives of Quadruply Charged Cations. Catal. Ind. 13, 373–377 (2021). https://doi.org/10.1134/S2070050421040024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421040024

Keywords:

Navigation