Skip to main content
Log in

Coupled Simulation of Gasdynamic and Elastoplastic Phenomena in a Material under the Action of an Intensive Energy Flux

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A complex computer model of thermomechanical phenomena and a technique for end-to-end modeling of processes occurring in a solid material under the action of an intense energy flux are developed. Using the example of calculating the impact on a polymer material, the dynamics of nonlinear wave processes leading to internal damage in a sample of the material and spalling phenomena are discussed. The created software can be used in the analysis of the results of intense energy impacts in engineering practice, verification of models of volumetric fractures, and spallation in brittle materials, as well as validation of wide-range equations of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. M. L. Kerber et al., Polymeric Composite Materials: Structure, Properties, Technologies, Ed. by A. A. Berlin (Professiya, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. P. Linde, A. Schulz, and W. Rust, “Influence of modelling and solution methods on the FE-simulation of the post-buckling behaviour of stiffened aircraft fuselage panels,” Compos. Struct. 73 (2), 229–236 (2006). https://doi.org/10.1016/j.compstruct.2005.11.048

    Article  Google Scholar 

  3. I. M. Bulanov and V. V. Vorobei, Technology of Rocket and Aerospace Structures Made of Composite Materials, Textbook (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 1998) [in Russian].

  4. H. M. Flower and C. Soutis, “Materials for airframes,” Aeronaut. J. 107 (1072), 331–341 (2003). https://doi.org/10.1017/S0001924000013658

    Article  Google Scholar 

  5. B. A. Demidov, V. P. Efremov, Yu. G. Kalinin, E. D. Kazakov, S. Yu. Metelkin, V. A. Petrov, and A. I. Potapenko, “New method of the polymeric material properties experimental investigation under powerful energy flux impact,” J. Phys.: Conf. Ser. 653, 012009 (2015). https://doi.org/10.1088/1742-6596/653/1/012009

    Article  Google Scholar 

  6. V. G. Novikov, A. D. Solomyannaya, I. Yu. Vichev, and A. S. Grushin, “THERMOS: Library of functions for calculating the radiation and thermodynamic properties of various substances and mixtures in a wide range of temperatures and densities,” Certificate of State Registration of Computer Programs No. 2013616315 (2013).

  7. R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman., “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31 (10), 3059–3078 (1988).  .https://doi.org/10.1063/1.866963

    Article  MATH  Google Scholar 

  8. V. A. Gasilov, A. S. Grushin, A. S. Ermakov, O. G. Olkhovskaia, and I. B. Petrov, “Simulation of the destruction of polymer materials under the action of intense energy flows,” Math. Models Comput. Simul. 11 (2), 198–208 (2019).https://doi.org/10.1134/S2070048219020066

    Article  MathSciNet  Google Scholar 

  9. L. I. Sedov, Mechanics of Continuous Media, 2nd ed. (Nauka, Moscow, 1973; World Scientific, River Edge, NJ, 1997).

  10. V. N. Bakulin and A. V. Ostrik, The Complex Effect of Radiation and Particles on Thin-Walled Structures with Heterogeneous Coatings (Fizmatlit, Moscow, 2015) [in Russian].

    Google Scholar 

  11. A. V. Babkin, V. I. Kolpakov, V. N. Okhitin, and V. V. Selivanov, Numerical Methods in Problems of Physics of Fast Processes, Textbook, in Applied Continuum Mechanics, Vol. 3 (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2006) [in Russian].

  12. G. Maenchen and S. Sack, “The TENSOR code,” in Methods in Computational Physics. Advances in Research and Applications. Vol. 3: Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press, New York, 1964), pp. 181–210.

  13. W. Nowacki, Thermoelasticity, 2nd ed. (Pergamon, Oxford, 1986); Theory of Elasticity (Mir, Moscow, 1975) [in Russian]. https://doi.org/10.1016/C2013-0-03247-1

  14. V. A. Gasilov, G. A. Bagdasarov, A. S. Boldarev, S. V. Dyachenko, E. L. Kartasheva, and O. G. Olkhovskaia, “The MARPLE software complex,” Certificate of State Registration of Computer Programs No. 2012660911 (2012) [Right holder: Keldysh Inst. Appl. Math. RAS].

  15. V. M. Gribanov, A. V. Ostrik, and S. S. Slobodchikov, “Thermal and mechanical action of X-ray radiation on materials and obstacles,” in Physics of Nuclear Explosion, Vol. 2: Explosion Action (Minist. Oborony Ross. Fed., Tsentr. Fiz.-Tech. Inst., Moscow, 1997), pp. 131–195 [in Russian].

  16. A. V. Vasyukov, A. S. Ermakov, A.P. Potapov, I. B. Petrov, A. V. Favorskaya, and A. V. Shevtsov, “Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems,” Comput. Math. Math. Phys. 54 (7), 1176–1189 (2014).https://doi.org/10.1134/S0965542514070100

    Article  MathSciNet  MATH  Google Scholar 

  17. I. B. Petrov, “Wave and spall phenomena in layered shells of finite thickness,” Mekh. Tverd. Tela, No. 4, 118–124 (1986).

    Google Scholar 

  18. https://www.salome-platform.org/.

  19. Yu. A. Poveshchenko, A. Yu. Krukovskii, D. S. Boikov, V. O. Podryga, and P. I. Rahimli, “Three-dimensional modeling of hydrodynamic problems taking into account elastic processes,” KIAM Preprint No. 30 (Keldysh Inst. Appl. Math. RAS, Moscow, 2021) [in Russian]. https://doi.org/10.20948/prepr-2021-30

    Book  Google Scholar 

  20. S. S. Ananyev, G. A. Bagdasarov, V. A. Gasilov, S. A. Dan’ko, B. A. Demidov, E. D. Kazakov, Yu. G. Kalinin, A. A. Kurilo, O. G. Ol’khovskaya, M. G. Strizhakov, and S. I. Tkachenko, “Study of the anode plasma dynamics under the action of a high-power electron beam on epoxy resin,” Plasma Phys. Rep. 43 (7), 726–732 (2017).https://doi.org/10.1134/S1063780X17070029

    Article  Google Scholar 

  21. V. A. Egorova, F. N. Voronin, M. E. Zhukovskii, M. B. Markov, A. I. Potapenko, R. V. Uskov, and D. S. Boikov, “Model of radiation-induced thermomechanical effects in heterogeneous finely dispersed materials,” Math. Models Comput. Simul. 12 (5), 729–739 (2020).  https://doi.org/10.1134/S2070048220050063

    Article  MathSciNet  MATH  Google Scholar 

  22. I. P. Tsygvintsev, A. Yu. Krukovskii, Yu. A. Poveshchenko, V. A. Gasilov, D. S. Boikov, and S. B. Popov, “Homogeneous difference schemes for the coupled problems of hydrodynamics and elasticity,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 161 (3), 377–392 (2019). https://doi.org/10.26907/2541-7746.2019.3.377-392

    Article  Google Scholar 

  23. Yu. A. Poveshchenko, V. A. Gasilov, V. O. Podryga, M. E. Ladonkina, A. S. Voloshin, D. S. Boikov, and K. A. Beklemysheva, “Difference schemes of consistent approximation of the stress-strain state and energy balance of a medium,” Math. Models Comput. Simul. 12 (2), 99–109 (2020).  https://doi.org/10.1134/S2070048220020131

    Article  MathSciNet  MATH  Google Scholar 

  24. B. A. Demidov, V. P. Efremov, M. V. Ivkin, V. A. Petrov, and A. N. Meshcheryakov, “Dynamics of interaction of a high-current electron beam with polymeric materials,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (4), 631–636 (2008). https://doi.org/10.1134/S1027451008040253

    Article  Google Scholar 

  25. B. A. Demidov, V. P. Efremov, V. A. Petrov, and A. N. Meshcheryakov, “Dynamics of bulk destruction of transparent dielectric polymeric materials under a pulsed high-energy electron beam,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (5), 673–677 (2009). https://doi.org/10.1134/S1027451009050036

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank their colleagues, S.V. Polyakov, N.A. Tarasov, A.S. Grushin, R.V. Uskov (KIAM RAS), I.B. Petrov, A.V. Vasyukov, S.I. Tkachenko (National Research University, Moscow Institute of Physics and Technology), Yu. G. Kalinin, and E.D. Kazakov (National Centre Kurchatov Institute) for their useful discussions on the formulation of problems and the results of computational experiments.

Funding

The calculations were performed on the hybrid supercomputers K60 and K100 installed in the Suреrсоmрutеr Сеntrе of Collective Usage of KIAM RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Olkhovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boykov, D.S., Olkhovskaya, O.G. & Gasilov, V.A. Coupled Simulation of Gasdynamic and Elastoplastic Phenomena in a Material under the Action of an Intensive Energy Flux. Math Models Comput Simul 14, 599–612 (2022). https://doi.org/10.1134/S2070048222040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048222040044

Keywords:

Navigation