Skip to main content
Log in

Nanoparticles in dendrimers: From synthesis to application

  • Reviews
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Methods for synthesizing metal, metal oxide, and metal halide nanoparticles (NPs) in the presence of dendrimers and dendrons are discussed in this review. There are numerous reviews describing dendrimers and their properties and applications in various areas of nanotechnologies, which indicates the growing interest of researchers in this unique class of monodisperse and highly branched macromolecules with highly ordered and controlled structures. The special magnetic, optical, and electronic properties of dendrimer (dendron) nanocomposites with NPs determine their prospects for application in medicine [54–58], in catalysis [32, 58–60], as molecular sensors [61–65], etc. Dendrimers successfully stabilize NPs, playing the role of a template (i.e., NPs are formed inside the dendrimer) or surfactants. In the latter case, dendrimers are stabilizing molecules, so the NPs are formed between the dendrimers. Functional dendrons can be also used as stabilizing molecules (1) directly during NP formation or (2) upon the subsequent functionalization of NPs via the replacement of the initial surfactants with dendrons. The unique advantages of dendrimers are completely fulfilled in those cases when the dendrimer design or reaction conditions allow either (1) the formation of very small NP sizes (for example, functional nanoclusters of gold and silver) or (2) control of the NP sizes, when dendrimer generation or other conditions vary, allowing one to control the properties of nanocomposites. Because the dendrimer (dendron) structure strongly differs from the structure of traditional surfactants, this leads to an opportunity of the targeted variation of solubility, functionality, and morphology of the nanocomposites based on dendrimers (dendrons) even when a dendrimer (dendron) plays the role of a surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Buhleier, W. Wehner, and F. Voegtle, “’Cascade’ and ‘Nonskid-Chain-Like’ Synthesis of Molecular Cavity Topologies,” Synthesis, No. 2, 155–158 (1978).

  2. R. G. Denkewalter, J. Kolc, and W. W. J. Lukasavage, US Patent No. 4, 289, 872 (September 15, 1981).

  3. D. A. Tomalia, H. Baker, J. R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, “A New Class of Polymers: Starburst-Dendritic Macromolecules,” Polym. J. 17, 117–132 (1985).

    CAS  Google Scholar 

  4. G. R. Newkome, Z. Q. Yao, G. R. Baker, and V. K. Gupta, “Cascade Molecules: A New Approach to Micelles, A[27]-Arborol,” J. Org. Chem. 50, 2003–2006 (1985).

    CAS  Google Scholar 

  5. D. A. Tomalia and H. D. Durst, “Genealogically Directed Synthesis—Starburst Cascade Dendrimers and Hyperbranched Structures,” Top. Curr. Chem. 165, 193–313 (1993).

    CAS  Google Scholar 

  6. G. R. Newkome, Advances in Dendritic Macromolecules (JAI Press, Greenwich, CT, United States, 1994).

    Google Scholar 

  7. D. A. Tomalia, “Starburst Cascade Dendrimers—Fundamental Building Blocks for a New Nanoscopic Chemistry Set,” Adv. Mater. (Weinheim, Ger.) 6(7–8) 529–539 (1994).

    CAS  Google Scholar 

  8. N. Ardoin and D. Astruc, “Molecular Trees—From Syntheses Towards Applications,” Bull. Soc. Chim. Fr. 132(9), 875–909 (1995).

    CAS  Google Scholar 

  9. D. A. Tomalia and P. R. Dvornic, “What Promise for Dendrimers?” Nature (London), 372, 617–618 (1994).

    CAS  ADS  Google Scholar 

  10. J. V. J. Frechet and C. J. Hawker, in Comprehensive Polymer Science, Ed. by G. Allen, S. L. Aggarwal, and S. Russo (Elsevier, Oxford, 1996), p. 70.

    Google Scholar 

  11. G. R. Newkome, C. N. Moorefield, and F. Voegtle, Dendritic Molecules: Concepts, Synthesis, and Perspectives (Wiley, Weinheim, Germany, 1996).

    Google Scholar 

  12. J. S. Moore, “Shape-Persistent Molecular Architectures of Nanoscale Dimension,” Acc. Chem. Res. 30, 402–413 (1997).

    CAS  Google Scholar 

  13. F. Zeng and S. C. Zimmerman, Chem. Rev. 97, 1681–1712 (1997).

    CAS  PubMed  Google Scholar 

  14. V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, and M. Venturi, “Designing Dendrimers Based on Transition Metal Complexes: Light-Harvesting Properties and Predetermined Redox Patterns,” Acc. Chem. Res. 31(1), 26–34 (1998).

    CAS  Google Scholar 

  15. A. M. Caminade, R. Laurent, B. Chaudret, and J. P. Majoral, “Phosphine-Terminated Dendrimers—Synthesis and Complexation Properties,” Coord. Chem. Rev. 180, 793–821 (1998).

    Google Scholar 

  16. Y. Kim and S. C. Zimmerman, “Applications of Dendrimers in Bio-Organic Chemistry,” Curr. Opin. Chem. Biol. 2(6), 733–742 (1998).

    CAS  PubMed  Google Scholar 

  17. O. A. Matthews, A. N. Shipway, and J. F. Stoddart, “Dendrimers—Branching-out from Curiosities into New Technologies,” Prog. Polym. Sci. 23(1), 1–56 (1998).

    CAS  Google Scholar 

  18. M. Venturi, S. Serroni, A. Juris, S. Campagna, and V. Balzani, “Electrochemical and Photochemical Properties of Metal-Containing Dendrimers,” Dendrimers, pp. 193–228 (1998).

  19. A. J. Berresheim, M. Muller, and K. Mullen, “Polyphenylene Nanostructures,” Chem. Rev. 99, 1747–1785 (1999).

    CAS  PubMed  Google Scholar 

  20. A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: Structure, Physical Properties, and Applications,” Chem. Rev. 99, 1665–1688 (1999).

    CAS  PubMed  Google Scholar 

  21. I. Cuadrado, M. Moran, C. M. Casado, B. Alonso, and J. Losada, “Organometallic Dendrimers with Transition Metals,” Coord. Chem. Rev. 195, 395–445 (1999).

    Google Scholar 

  22. M. Fisher and F. Voegtle, “Dendrimers: From Design to Application—A Progress Report,” Angew. Chem., Int. Ed. Eng. 38, 884–905 (1999).

    Google Scholar 

  23. J. P. Majoral and A. M. Caminade, “Dendrimers Containing Heteroatoms (Si, P, B, Ge, or Bi),” Chem. Rev. 99(3), 845–880 (1999).

    CAS  PubMed  Google Scholar 

  24. G. R. Newkome, E. F. He, and C. N. Moorefield, “Suprasupermolecules with Novel Properties: Metallodendrimers,” Chem. Rev. 99(7), 1689–1746 (1999).

    CAS  PubMed  Google Scholar 

  25. J. Roovers and B Comanita, “Dendrimers and Dendrimer-Polymer Hybrids,” Branched Polym. I, pp. 179–228 (1999).

  26. D. Astruc, J. C. Blais, E. Cloutet, L. Djakovitch, S. Rigaut, J. Ruiz, V. Sartor, and C. Valerio, “The First Organometallic Dendrimers: Design and Redox Functions,” Dendrimers II 210, 229–259 (2000).

    CAS  Google Scholar 

  27. K. Inoue, “Functional Dendrimers, Hyperbranched and Star Polymers,” Prog. Polym. Sci. 25, 453–571 (2000).

    CAS  Google Scholar 

  28. F. Vögtle, S. Gestermann, R. Hesse, H. Schwierz, and B. Windisch, “Functional Dendrimers,” Prog. Polym. Sci. 25(7), 987–1041 (2000).

    Google Scholar 

  29. D. Astruc and F. Chardac, “Dendritic Catalysts and Dendrimers in Catalysis,” Chem. Rev. 101(9), 2991–3023 (2001).

    CAS  PubMed  Google Scholar 

  30. V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero, and S. Serroni, “Dendrimers Based on Photoactive Metal Complexes: Recent Advances,” Coord. Chem. Rev. 219, 545–572 (2001).

    Google Scholar 

  31. R. M. Crooks, B. I. Lemon, L. Sun, L. K. Yeung, and M. Q. Zhao, “Dendrimer-Encapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications,” Dendrimers III: Design, Dimension, Function 212, 81–135 (2001).

    CAS  Google Scholar 

  32. R. M. Crooks, M. Q. Zhao, L. Sun, V. Chechik, and L. K. Yeung, “Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis,” Acc. Chem. Res. 34(3), 181–190 (2001).

    CAS  PubMed  Google Scholar 

  33. M. A. El-Sayed, “Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).

    CAS  PubMed  MathSciNet  Google Scholar 

  34. S. M. Grayson and M. J. Frechet, “Convergent Dendrons and Dendrimers: From Synthesis to Applications,” Chem. Rev. 101, 3819–3867 (2001).

    CAS  PubMed  Google Scholar 

  35. S. Serroni, S. Campagna, F. Puntoriero, C. Di Pietro, N. D. McClenaghan, and F. Loiseau, “Dendrimers Based on Ruthenium(II) and Osmium(II) Polypyridine Complexes and the Approach of Using Complexes as Ligands and Complexes as Metals,” Chem. Soc. Rev. 30(6), 367–375 (2001).

    CAS  Google Scholar 

  36. U. M. Wiesler, T. Weil, and K. Mullen, “Nanosized Polyphenylene Dendrimers,” Dendrimers III: Design, Dimension, Function 212, 1–40 (2001).

    CAS  Google Scholar 

  37. A. M. Caminade, V. Maraval, R. Laurent, and J. P. Majoral, “Organometallic Derivatives of Phosphorus-Containing Dendrimers: Synthesis, Properties, and Applications in Catalysis,” Curr. Org. Chem. 6(8), 739–774 (2002).

    CAS  Google Scholar 

  38. G. R. Newkome, C. N. Moorefield, and F. Voegtle, Dendritic Molecules: Concepts, Synthesis, and Perspectives (Wiley, Weinheim, Germany, 2002).

    Google Scholar 

  39. L. J. Twyman, A. S. H. King, and I. K. Martin, “Catalysis inside Dendrimers,” Chem. Soc. Rev. 31, 69–82 (2002).

    CAS  PubMed  Google Scholar 

  40. V. Balzani, P. Ceroni, M. Maestri, C. Saudan, and V. Vicinelli, “Luminescent Dendrimers: Recent Advances,” Dendrimers V: Functional and Hyperbranched Building Blocks, Photophysical Properties, Applications in Materials and Life Sciences 228, 159–191 (2003).

    CAS  Google Scholar 

  41. A. M. Caminade, V. Maraval, R. Laurent, C. O. Turrin, P. Sutra, J. Leclaire, L. Griffe, P. Marchand, C. Baudoin-Dehoux, C. Rebout, and J. P. Majoral, “Phosphorus Dendrimers: From Synthesis to Applications,” C. R. Chim. 6(8–10), 791–801 (2003).

    CAS  Google Scholar 

  42. K. Esumi, “Dendrimers for Nanoparticle Synthesis and Dispersion Stabilization,” Top. Curr. Chem. 227, 31–52 (2003).

    CAS  Google Scholar 

  43. D. Battaglia, J. J. Li, Y. J. Wang, and X. G. Peng, “Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells,” Angew. Chem., Int. Ed. 42(41), 5035–5039 (2003).

    CAS  Google Scholar 

  44. S. Yokoyama, A. Otomo, T. Nakahama, Y. Okuno, and S. Mashiko, “Dendrimers for Optoelectronic Applications,” Dendrimers V: Functional and Hyperbranched Building Blocks, Photophysical Properties, Applications in Materials and Life Sciences 228, 205–226 (2003).

    CAS  Google Scholar 

  45. M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104(1) 293–346 (2004).

    CAS  PubMed  Google Scholar 

  46. D. Astruc, “Metallodendritic Catalysis: An Efficient Contribution to Green Chemistry,” C. R. Chim. 8(6–7), 1101–1107 (2005).

    CAS  Google Scholar 

  47. R. E. Bauer, A. C. Grimsdale, and K. Mullen, “Functionalised Polyphenylene Dendrimers and Their Applications,” in Functional Molecular Nanostructures, Ed. by A.-D. Schlüter (Springer, Berlin, 2005), pp. 253–286.

    Google Scholar 

  48. I. Gitsov and C. Lin, “Dendrimers—Nanoparticles with Precisely Engineered Surfaces,” Curr. Org. Chem. 9(11), 1025–1051 (2005).

    CAS  Google Scholar 

  49. D. A. Tomalia, “Birth of a New Macromolecular Architecture: Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Polymer Chemistry,” Prog. Polym. Sci. 30(3–4), 294–324 (2005).

    CAS  Google Scholar 

  50. B. Helms and J. M. J. Frechet, “The Dendrimer Effect in Homogeneous Catalysis,” Adv. Synth. Catal. 348(10–11), 1125–1148 (2006).

    CAS  Google Scholar 

  51. J. N. H. Reek, S. Arevalo, R. van Heerbeek, P. C. J. Kamer, and P. van Leeuwen, “Dendrimers in Catalysis,” Adv. Catal. 49, 71–151 (2006).

    CAS  Google Scholar 

  52. M. S. Rajadurai, Z. B. Shifrina, N. V. Kuchkina, A. L. Rusanov, and K. Muellen, “Rigid Aromatic Dendrimers,” Usp. Khim. 76(8), 821–838 (2007).

    Google Scholar 

  53. D. Astruc, C. Ornelas, and J. Ruiz, “Metallocenyl Dendrimers and Their Applications in Molecular Electronics, Sensing, and Catalysis,” Acc. Chem. Res. 41(7), 841–856 (2008).

    CAS  PubMed  Google Scholar 

  54. B. I. Lemon III and R. M. Crooks, “Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots,” J. Am. Chem. Soc. 122, 12 886–12 887 (2000).

    CAS  Google Scholar 

  55. C. Ornelas, J. R. Aranzaes, L. Salmon, and D. Astruc, “’Click’ Dendrimers: Synthesis, Redox Sensing of Pd(OAc)(2), and Remarkable Catalytic Hydrogenation Activity of Precise Pd Nanoparticles Stabilized by 1.2,3-Triazole-Containing Dendrimers,” Chem.—Eur. J. 14(1), 50–64 (2008).

    CAS  Google Scholar 

  56. M. C. Daniel, J. R. Aranzaes, S. Nlate, and D. Astruc, “Gold-Nanoparticle-Cored Polyferrocenyl Dendrimers: Modes of Synthesis and Functions as Exoreceptors of Biologically Important Anions and Re-Usable Redox Sensors,” J. Inorg. Organomet. Polym. 15(1), 107–119 (2005).

    CAS  Google Scholar 

  57. R. Kreiter, A. W. Kleij, R. J. M. K. Gebbink, and G. van Koten, “Dendritic Catalysts,” Top. Curr. Chem. 217, 163–199 (2001).

    CAS  Google Scholar 

  58. G. E. Oosterom, J. N. H. Reek, P. C. J. Kamer, and P. W. N. M. van Leeuwen, “Transition Metal Catalysis Using Functionalized Dendrimers,” Angew. Chem., Int. Ed. Engl. 40, 1828–1849 (2001).

    CAS  Google Scholar 

  59. C. J. Hawker and J. M. J. Frechet, “Preparation of Polymers with Controlled Molecular Architecture: A New Convergent Approach to Dendritic Macromolecules,” J. Am. Chem. Soc. 112, 7638–7647 (1990).

    CAS  Google Scholar 

  60. C. Schlenk and H. Frey, “Carbosilane Dendrimers—Synthesis, Functionalization, and Application,” Monatsh. Chem. 130(1), 3–14 (1999).

    CAS  Google Scholar 

  61. J. Frechet and D. Tomalia, in Dendrimers and Other Dendritic Polymers, Ed. by D. Tomalia (Wiley, Chichester, United Kingdom, 2001).

    Google Scholar 

  62. S. Serroni, G. Denti, S. Campagna, A. Juris, M. Ciano, and V. Balzani, “Arborols Based on Luminescent and Redox-Active Transition-Metal Complexes,” Angew. Chem., Int. Ed. Engl. 31(11), 1493–1495 (1992).

    Google Scholar 

  63. V. Balzani, A. Juris, M. Venturi, S. Campagna, and S. Serroni, “Luminescent and Redox-Active Polynuclear Transition Metal Complexes,” Chem. Rev. 96(2), 759–833 (1996).

    CAS  PubMed  Google Scholar 

  64. M. R. Knecht, J. C. Garcia-Martinez, and R. M. Crooks, “Synthesis, Characterization, and Magnetic Properties of Dendrimer-Encapsulated Nickel Nanoparticles Containing < 150 Atoms,” Chem. Mater. 18(21), 5039–5044 (2006).

    CAS  Google Scholar 

  65. K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer,” Langmuir 14(12), 3157–3159 (1998).

    CAS  Google Scholar 

  66. M. Q. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu Nanoclusters within Dendrimer Templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).

    CAS  Google Scholar 

  67. L. Balogh and D. A. Tomalia, “Poly(amidoamine) Dendrimer-Templated Nanocomposites: 1. Synthesis of Zerovalent Copper Nanoclusters,” J. Am. Chem. Soc. 120 7355–7356 (1998).

    CAS  Google Scholar 

  68. L. H. Hanus, K. Sooklal, C. J. Murphy, and H. J. Ploehn, “Aggregation Kinetics of Dendrimer-Stabilized CdS Nanoclusters,” Langmuir 16(6), 2621–2626 (2000).

    CAS  Google Scholar 

  69. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, and C. J. Murphy, “Luminescence Spectral Properties of CdS Nanoparticles,” J. Phys. Chem. B 103(36), 7613–7620 (1999).

    CAS  Google Scholar 

  70. J. M. Huang, K. Sooklal, C. J. Murphy and H. J. Ploehn, “Polyamine-Quantum Dot Nanocomposites: Linear versus Starburst Stabilizer Architectures,” Chem. Mater. 11(12), 3595–3601 (1999).

    CAS  Google Scholar 

  71. M. E. Garcia, L. A. Baker, and R. M. Crooks, “Preparation and Characterization of Dendrimer-Gold Colloid Nanocomposites,” Anal. Chem. 71(1), 256–258 (1999).

    CAS  Google Scholar 

  72. M. Q. Zhao and R. M. Crooks, “Intradendrimer Exchange of Metal Nanoparticles,” Chem. Mater. 11(11), 3379–3385 (1999).

    CAS  Google Scholar 

  73. K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver,” Langmuir, 16(6), 2604–2608 (2000).

    CAS  Google Scholar 

  74. K. Esumi, T. Hosoya, A. Suzuki, and K. Torigoe, “Formation of Gold and Silver Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly(amidoamine) Dendrimers,” J. Colloid Interface Sci. 226(2), 346–352 (2000).

    CAS  Google Scholar 

  75. M. R. Knecht, J. C. Garcia-Martinez, and R. M. Crooks, “Hydrophobic Dendrimers as Templates for Au Nanoparticles,” Langmuir 21(25), 11 981–11 986 (2005).

    CAS  Google Scholar 

  76. K. Sooklal, L. H. Hanus, H. J. Ploehn, and C. J. Murphy, “A Blue-Emitting CdS/Dendrimer Nanocomposite,” Adv. Mater. (Weinheim, Ger.) 10(14), 1083 (1998).

    CAS  Google Scholar 

  77. O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of Dendrimer-Encapsulated Au and Ag Nanoparticles by Selective Extraction,” Chem. Mater. 16(22), 4202–4204 (2004).

    CAS  Google Scholar 

  78. Y. G. Kim, S. K. Oh, and R. M. Crooks, “Preparation and Characterization of 1–2 nm Dendrimer-Encapsulated Gold Nanoparticles Having Very Narrow Size Distributions,” Chem. Mater. 16(1), 167–172 (2000).

    CAS  Google Scholar 

  79. J. C. Garcia-Martinez and R. M. Crooks, “Extraction of Au Nanoparticles Having Narrow Size Distributions from within Dendrimer Templates,” J. Am. Chem. Soc. 126(49), 16 170–16 178 (2004).

    CAS  Google Scholar 

  80. R. W. J. Scott, O. M. Wilson, and R. M. Crooks, “Titania-Supported Au and Pd Composites Synthesized from Dendrimer-Encapsulated Metal Nanoparticle Precursors,” Chem. Mater. 16(26), 5682–5688 (2004).

    CAS  Google Scholar 

  81. K. Esumi, T. Hosoya, A. Suzuki, and K. Torigoe, “Spontaneous Formation of Gold Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly(amidoamine) Dendrimers,” Langmuir 16(6), 2978–2980 (2000).

    CAS  Google Scholar 

  82. F. Grohn, B. J. Bauer, Y. A. Akpalu, C. L. Jackson, and E. J. Amis, “Dendrimer Templates for the Formation of Gold Nanoclusters,” Macromolecules 33(16), 6042–6050 (2000).

    ADS  Google Scholar 

  83. J. J. Michels, J. Huskens, and D. N. Reinhoudt, “Dendrimer-Cyclodextrin Assemblies as Stabilizers for Gold and Platinum Nanoparticles,” J. Chem. Soc., Perkin Trans. 2, No. 1, 102–105 (2002).

  84. R. West, Y. Wang, and T. Goodson, “Nonlinear Absorption Properties in Novel Gold Nanostructured Topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).

    CAS  Google Scholar 

  85. L. K. Yeung and R. M. Crooks, “Heck Heterocoupling within a Dendritic Nanoreactor,” Nano Lett. 1(1), 14–17 (2001).

    CAS  ADS  Google Scholar 

  86. E. H. Rahim, F. S. Kamounah, J. Frederiksen, and J. B. Christensen, “Heck Reactions Catalyzed by PAMAM-Dendrimer Encapsulated Pd(0) Nanoparticles,” Nano Lett. 1(9), 499–501 (2001).

    CAS  ADS  Google Scholar 

  87. Y. H. Niu, L. K. Yeung, and R. M. Crooks, “Size-Selective Hydrogenation of Olefins by Dendrimer-Encapsulated Palladium Nanoparticles,” J. Am. Chem. Soc. 123(28), 6840–6846 (2001).

    CAS  Google Scholar 

  88. M. Q. Zhao and R. M. Crooks, “Dendrimer-Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis,” Adv. Mater. (Weinheim, Ger.) 11(3), 217 (1999).

    CAS  Google Scholar 

  89. S. K. Oh, Y. G. Kim, H. C. Ye, and R. M. Crooks, “Synthesis, Characterization, and Surface Immobilization of Metal Nanoparticles Encapsulated within Bifunctionalized Dendrimers,” Langmuir 19(24), 10 420–10 425 (2003).

    CAS  Google Scholar 

  90. H. C. Ye, R. W. J. Scott, and R. M. Crooks, “Synthesis, Characterization, and Surface Immobilization of Platinum and Palladium Nanoparticles Encapsulated within Amine-Terminated Poly(amidoamine) Dendrimers,” Langmuir 20(7), 2915–2920 (2004).

    CAS  PubMed  Google Scholar 

  91. K. Esumi, R. Nakamura, A. Suzuki, and K. Torigoe, “Preparation of Platinum Nanoparticles in Ethyl Acetate in the Presence of Poly(amidoamine) Dendrimers with a Methyl Ester Terminal Group,” Langmuir 16(20), 7842–7846 (2000).

    CAS  Google Scholar 

  92. H. Lang, R. A. May, B. L. Iversen and B. D. Chandler, “Dendrimer-Encapsulated Nanoparticle Precursors to Supported Platinum Catalysts,” J. Am. Chem. Soc. 125(48), 14 832–14 836 (2003).

    CAS  Google Scholar 

  93. R. W. J. Scott, A. K. Datye, and R. M. Crooks, “Bimetallic Palladium-Platinum Dendrimer-Encapsulated Catalysts,” J. Am. Chem. Soc. 125(13), 3708–3709 (2003).

    CAS  PubMed  Google Scholar 

  94. R. W. J. Scott, O. M. Wilson, S. K. Oh, E. A. Kenik, and R. M. Crooks, “Bimetallic Palladium-Gold Dendrimer-Encapsulated Catalysts,” J. Am. Chem. Soc. 126(47), 15 583–15 591 (2004).

    CAS  Google Scholar 

  95. O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Synthesis, Characterization, and Structure-Selective Extraction of 1–3 nm Diameter AuAg Dendrimer-Encapsulated Bimetallic Nanoparticles,” J. Am. Chem. Soc. 127(3), 1015–1024 (2005).

    CAS  PubMed  Google Scholar 

  96. R. W. J. Scott, C. Sivadinarayana, O. M. Wilson, Z. Yan, D. W. Goodman, and R. M. Crooks, “Titania-Supported PdAu Bimetallic Catalysts Prepared from Dendrimer-Encapsulated Nanoparticle Precursors,” J. Am. Chem. Soc. 127(5), 1380–1381 (2005).

    CAS  PubMed  Google Scholar 

  97. Y.-M. Chung and H.-K. Rhee, J. Mol. Catal. A: Chem. 206(1–2), 291–298 (2003).

    CAS  Google Scholar 

  98. Y. H. Niu and R. M. Crooks, “Dendrimer-Encapsulated Metal Nanoparticles and Their Applications to Catalysis,” C. R. Chim. 6(8–10), 1049–1059 (2003).

    CAS  Google Scholar 

  99. R. W. J. Scott, O. M. Wilson, and R. M. Crooks, “Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles,” J. Phys. Chem. B 109(2), 692–704 (2005).

    CAS  PubMed  Google Scholar 

  100. B. D. Chandler and J. D. Gilbertson, “Topics in Organometallic Chemistry,” in Dendrimer Catalysis (Springer, Berlin, 2006), Vol. 20, pp. 97–120.

    Google Scholar 

  101. J. A. He, R. Valluzzi, K. Yang, T. Dolukhanyan, C. M. Sung, J. Kumar, S. K. Tripathy, L. Samuelson, L. Balogh, and D. A. Tomalia, “Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite,” Chem. Mater. 11(11), 3268–3274 (1999).

    CAS  Google Scholar 

  102. J. Won, K. J. Ihn, and Y. S. Kang, “Gold Nanoparticle Patterns on Polymer Films in the Presence of Poly(amidoamine) Dendrimers,” Langmuir 18(21), 8246–8249 (2002).

    CAS  Google Scholar 

  103. G. Schmid, Clusters and Colloids (Wiley, Weinheim, Germany, 1994).

    Google Scholar 

  104. P. N. Floriano, C. O. Noble, J. M. Schoonmaker, E. D. Poliakoff, and R. L. McCarley, “Cu(0) Nanoclusters Derived from Poly(propylene imine) Dendrimer Complexes of Cu(II),” J. Am. Chem. Soc. 123(43), 10 545–10 553 (2001).

    CAS  Google Scholar 

  105. K. Esumi, T. Hosoya, A. Suzuki, and K. Torigoe, “Preparation of Hydrophobically Modified Poly(amidoamine) Dendrimer-Encapsulated Gold Nanoparticles in Organic Solvents,” J. Colloid Interface Sci. 229(1), 303–306 (2000).

    CAS  PubMed  Google Scholar 

  106. K. Esumi, A. Kameo, A. Suzuki, and K. Torigoe, “Preparation of Gold Nanoparticles in Formamide and NN-Dimethylformamide in the Presence of Poly(amidoamine) Dendrimers with Surface Methyl Ester Groups,” Colloids Surf., A 189(1–3), 155–161 (2001).

    CAS  Google Scholar 

  107. R. C. Hedden, B. J. Bauer, A. P. Smith, F. Grohn, and E. Amis, “Templating of Inorganic Nanoparticles by PAMAM/PEG Dendrimer-Star Polymers,” Polymer 43(20), 5473–5481 (2002).

    CAS  Google Scholar 

  108. S. K. Oh, Y. H. Niu, and R. M. Crooks, “Size-Selective Catalytic Activity of Pd Nanoparticles Encapsulated within End-Group Functionalized Dendrimers,” Langmuir 21(22), 10 209–10 213 (2005).

    CAS  Google Scholar 

  109. S. Deng, J. Locklin, D. Patton, A. Baba, and R. C. Advincula, “Thiophene Dendron Jacketed Poly(amidoamine) Dendrimers: Nanoparticle Synthesis and Adsorption on Graphite,” J. Am. Chem. Soc. 127(6), 1744–1751 (2005).

    CAS  PubMed  Google Scholar 

  110. G. Schmid, Nanoparticles (Wiley, Weinheim, Germany, 2004).

    Google Scholar 

  111. A. d’Aleo, R. M. Williams, F. Osswald, P. Edamana, U. Hahn, J. van Heyst, F. D. Tichelaar, F. Voegtle, and L. de Cola, “Oligothia Dendrimers for the Formation of Gold Nanoparticles,” Adv. Funct. Mater. 14(12), 1167–1177 (2004).

    Google Scholar 

  112. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System,” J. Chem. Soc., Chem. Commun. (Cambridge), No. 7, 801–802 (1994).

  113. D. W. Chang and L. Dai, “Photo-Induced Formation and Self-Assembling of Gold Nanoparticles in Aqueous Solution of Amphiphilic Dendrimers with Oligo(p-phenylene vinylene) Core Branches and Oligo(ethylene oxide) Terminal Chains,” Nanotechnology 18(36), 365 605/1–365 605/7 (2007).

    CAS  Google Scholar 

  114. G. Bergamini, P. Ceroni, V. Balzani, M. Gingras, J. M. Raimundo, V. Morandi, and P. G. Merli, “Synthesis of Small Gold Nanoparticles: Au(I) Disproportionation Catalyzed by a Persulfurated Coronene Dendrimer,” Chem. Commun. (Cambridge), No. 40, 4167–4169 (2007).

  115. S. Eustis and M. A. El-Sayed, “Molecular Mechanism of the Photochemical Generation of Gold Nanoparticles in Ethylene Glycol: Support for the Disproportionation Mechanism,” J. Phys. Chem. B 110(29), 14014–14 019 (2006).

    CAS  PubMed  Google Scholar 

  116. Z. B. Shifrina, M. S. Rajadurai, N. V. Firsova, L. M. Bronstein, X. Huang, A. L. Rusanov, and K. Muellen, “Poly(phenylene-pyridyl) Dendrimers: Synthesis and Templating of Metal Nanoparticles,” Macromolecules 38, 9920–9932 (2005).

    CAS  ADS  Google Scholar 

  117. X. Peng, Q. Pan, and G. L. Rempel, “Bimetallic Dendrimer-Encapsulated Nanoparticles as Catalysts: A Review of the Research Advances,” Chem. Soc. Rev. 37(8), 1619–1628 (2008).

    PubMed  Google Scholar 

  118. Y. M. Chung and H. K. Rhee, “Pt-Pd Bimetallic Nanoparticles Encapsulated in Dendrimer Nanoreactor,” Catal. Lett. 85(3–4), 159–164 (2003).

    CAS  Google Scholar 

  119. B. J. Auten, B. P. Hahn, G. Vijayaraghavan, K. J. Stevenson, and B. D. Chandler, “Preparation and Characterization of 3 nm Magnetic NiAu Nanoparticles,” J. Phys. Chem. C 112(14), 5365–5372 (2008).

    CAS  Google Scholar 

  120. Y. L. Luo and X. P. Sun, “Rapid, Single-Step Preparation of Dendrimer-Protected Silver Nanoparticles through a Microwave-Based Thermal Process,” Mater. Lett. 61(8–9), 1622–1624 (2007).

    CAS  Google Scholar 

  121. S. R. Puniredd and M. P. Srinivasan, “Covalent Molecular Assembly in a Supercritical Medium: Formation of Nanoparticles Encapsulated in Immobilized Dendrimers,” Ind. Eng. Chem. Res. 46(2), 464–471 (2007).

    CAS  Google Scholar 

  122. C. Ornelas, L. Salmon, J. R. Aranzaes, and D. Astruc, “Catalytically Efficient Palladium Nanoparticles Stabilized by “Click” Ferrocenyl Dendrimers,” Chem. Commun. (Cambridge), No. 46, 4946–4948 (2007).

  123. E. Badetti, A.-M. Caminade, J.-P. Majoral, M. Moreno-Manas, and R. Sebastian, “Palladium(0) Nanoparticles Stabilized by Phosphorus Dendrimers Containing Coordinating 15-Membered Triolefinic Macrocycles in Periphery,” Langmuir 24(5), 2090–2101 (2008).

    CAS  PubMed  Google Scholar 

  124. O. Enoki, T. Imaoka, and K. Yamamoto, “One-Step Synthesis of a Platinum Nanoparticle with Carbon Materials Using a Phenylazomethine Dendrimer as a Template,” Bull. Chem. Soc. Jpn. 79(4), 621–626 (2006).

    CAS  Google Scholar 

  125. V. Juttukonda, R. L. Paddock, J. E. Raymond, D. Denomme, A. E. Richardson, L. E. Slusher, and B. D. Fahlman, “Facile Synthesis of Tin Oxide Nanoparticles Stabilized by Dendritic Polymers,” J. Am. Chem. Soc. 128(2), 420–421 (2006).

    CAS  PubMed  Google Scholar 

  126. X. Shi, S. Wang, S. Meshinchi, M. E. van Antwerp, X. Bi, I. Lee, and J. R. Baker, Jr., “Dendrimer-Entrapped Gold Nanoparticles as a Platform for Cancer-Cell Targeting and Imaging,” Small 3(7), 1245–1252 (2007).

    CAS  PubMed  Google Scholar 

  127. J. J. J. M. Donners, R. Hoogenboom, A. P. H. J. Schenning, P. A. van Hal, R. J. M. Nolte, E. W. Meijer, and N. A. J. M. Sommerdijk, “Fabrication of Organic-Inorganic Semiconductor Composites Utilizing the Different Aggregation States of a Single Amphiphilic Dendrimer,” Langmuir 18(7), 2571–2576 (2002).

    CAS  Google Scholar 

  128. X. Y. Shi, K. Sun, L. P. Balogh, and J. R. Baker, “Synthesis, Characterization, and Manipulation of Dendrimer-Stabilized Iron Sulfide Nanoparticles,” Nanotechnology 17(18), 4554–4560 (2006).

    CAS  ADS  Google Scholar 

  129. P. Yang, W. Zhang, Y. Du, and X. Wang, “Hydrogenation of Nitrobenzenes Catalyzed by Platinum Nanoparticle Core-Polyaryl Ether Trisacetic Acid Ammonium Chloride Dendrimer Shell Nanocomposite,” J. Mol. Catal. A: Chem. 260(1–2), 4–10 (2006).

    CAS  Google Scholar 

  130. L. Wu, B.-L. Li, Y.-Y. Huang, H.-F. Zhou, Y.-M. He, and Q.-H. Fan, “Phosphine Dendrimer-Stabilized Palladium Nanoparticles, a Highly Active and Recyclable Catalyst for the Suzuki-Miyaura Reaction and Hydrogenation,” Org. Lett. 8(16), 3605–3608 (2006).

    CAS  PubMed  Google Scholar 

  131. Y.-S. Shon and D. Choi, “A Route to Redox-Active Nanoparticle-Cored Dendrimers: Post-Encapsulation of Ferrocene,” Chem. Lett. 35(6), 644–645 (2006).

    CAS  Google Scholar 

  132. M.-K. Kim, Y.-M. Jeon, W. S. Jeon, H.-J. Kim, K. Kim, S. G. Hong, and C. G. Park, “Novel Dendron-Stabilized Gold Nanoparticles with High Stability and Narrow Size Distribution,” Chem. Commun. (Cambridge), No. 7, 667–668 (2001).

  133. D. Li and J. Li, “Frechet-Type Dendrons-Capped Gold Clusters,” Colloids Surf., A 257–258, 255–259 (2005).

    Google Scholar 

  134. R. Y. Wang, J. Yang, Z. P. Zheng, M. D. Carducci, J. Jiao, and S. Seraphin, “Dendron-Controlled Nucleation and Growth of Gold Nanoparticles,” Angew. Chem., Int. Ed. 40(3), 549–552 (2001).

    CAS  Google Scholar 

  135. B. Huang and D. A. Tomalia, “Dendronization of Gold and CdSe/CdS (Core-Shell) Quantum Dots with Tomalia Type, Thiol Core, Functionalized Poly(amidoamine) (PAMAM) Dendrons,” J. Lumin. 111(4), 215–223 (2005).

    CAS  Google Scholar 

  136. C. Hirano, T. Imae, M. Tamura, and Y. Takaguchi, “Fabrication and Luminescent Properties of Silver Nanoparticles Passivated by Fullerodendrons,” Chem. Lett. 34(6), 862–863 (2005).

    CAS  Google Scholar 

  137. L. Tao, G. J. Chen, G. Mantovani, S. York, and D. M. Haddleton, “Modification of Multi-Wall Carbon Nanotube Surfaces with Poly(amidoamine) Dendrons: Synthesis and Metal Templating,” Chem. Commun. (Cambridge), No. 47, 4949–4951 (2006).

  138. R. Abu-Reziq, H. Alper, D. S. Wang, and M. L. Post, “Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts,” J. Am. Chem. Soc. 128(15), 5279–5282 (2006).

    CAS  PubMed  Google Scholar 

  139. C. Duanmu, I. Saha, Y. Zheng, B. M. Goodson, and Y. Gao, “Dendron-Functionalized Superparamagnetic Nanoparticles with Switchable Solubility in Organic and Aqueous Media: Matrices for Homogeneous Catalysis and Potential MRI Contrast Agents,” Chem. Mater. 18(25), 5973–5981 (2006).

    CAS  Google Scholar 

  140. R. C. Advincula, “Hybrid Organic-Inorganic Nanomaterials Based on Polythiophene Dendronized Nanoparticles,” Dalton Trans., No. 23, 2778–2784 (2006).

    Google Scholar 

  141. Y. Men, M. Higuchi, and K. Yamamoto, “Synthesis of DPA Dendron Encapsulated Gold Clusters with Metal-Assembling Function,” Sci. Technol. Adv. Mater. 7(2), 139–144 (2006).

    CAS  Google Scholar 

  142. A. W. Shaffer, J. G. Worden, and Q. Huo, “Comparison Study of the Solution Phase versus Solid Phase Place Exchange Reactions in the Controlled Functionalization of Gold Nanoparticles,” Langmuir 20(19), 8343–8351 (2004).

    CAS  PubMed  Google Scholar 

  143. J. G. Worden, Q. Dai, A. W. Shaffer, and Q. Huo, “Monofunctional Group-Modified Gold Nanoparticles from Solid Phase Synthesis Approach: Solid Support and Experimental Condition Effect,” Chem. Mater. 16(19), 3746–3755 (2004).

    CAS  Google Scholar 

  144. J. G. Worden, A. W. Shaffer, and Q. Huo, “Controlled Functionalization of Gold Nanoparticles through a Solid Phase Synthesis Approach,” Chem. Commun. (Cambridge), No. 5, 518–519 (2004).

  145. J. G. Worden, Q. Dai, and Q. Huo, “A Nanoparticle-Dendrimer Conjugate Prepared from a One-Step Chemical Coupling of Monofunctional Nanoparticles with a Dendrimer,” Chem. Commun. (Cambridge), No. 14, 1536–1538 (2006).

    Google Scholar 

  146. Y. A. Wang, J. J. Li, H. Chen, and X. Peng, “Stabilization of Inorganic Nanocrystals by Organic Dendrons,” J. Am. Chem. Soc. 124(10), 2293–2298 (2002).

    CAS  PubMed  Google Scholar 

  147. Y. Park, P. Taranekar, J. Y. Park, A. Baba, T. Fulghum, R. Ponnapati, and R. C. Advincula, “Hybrid CdSe Nanoparticle-Carbazole Dendron Boxes: Electropolymerization and Energy-Transfer Mechanism Shift,” Adv. Funct. Mater. 18(14), 2071–2078 (2008).

    CAS  Google Scholar 

  148. N. V. Kuchkina, L. M. Bronshtein, A. L. Rusanov, and Z. B. Shifrina, “Synthesis of CdS Nanoparticles in the Presence of the Rigid Aromatic Dendrimer,” Izv. Akad. Nauk. (2009) (in press).

  149. S. Nlate, L. Plault, and D. Astruc, Chem.—Eur. J. “Synthesis of 9- and 27-Armed Tetrakis(diperoxotungsto)phosphate-Cored Dendrimers and Their Use as Recoverable and Reusable Catalysts in the Oxidation of Alkenes, Sulfides, and Alcohols with Hydrogen Peroxide,” Chem.—Eur. J. 12(3), 903–914 (2006).

    CAS  Google Scholar 

  150. S. Nlate, L. Plault, and D. Astruc, “Peripheral Functionalisation of Dendrimers with Polyoxotungstate Complexes Assembled by Ionic Bonding and Their Use as Oxidation Catalysts: Influence of the Tether Length,” New J. Chem. 31(7), 1264–1274 (2007).

    CAS  Google Scholar 

  151. K. Esumi, H. Houdatsu, and T. Yoshimura, “Antioxidant Action by Gold-PAMAM Dendrimer Nanocomposites,” Langmuir 20(7), 2536–2538 (2004).

    CAS  PubMed  Google Scholar 

  152. B. J. Auten, H. Lang, and B. D. Chandler, “Dendrimer Templates for Heterogeneous Catalysts: Bimetallic Pt-Au Nanoparticles on Oxide Supports,” Appl. Catal., B 81(3–4), 225–235 (2008).

    CAS  Google Scholar 

  153. R. J. Korkosz, J. D. Gilbertson, K. S. Prasifka, and B. D. Chandler, “Dendrimer Templates for Supported Au Catalysis,” Catal. Today 122(3–4), 370–377 (2007).

    CAS  Google Scholar 

  154. C. J. Crump, J. D. Gilbertson, and B. Chandler, “CO Oxidation and Toluene Hydrogenation by Pt/TiO2 Catalysts Prepared from Dendrimer Encapsulated Nanoparticle Precursors,” Top. Catal. 49(3–4), 233–240 (2008).

    CAS  Google Scholar 

  155. Y. M. Lopez-De Jesus, A. Vicente, G. Lafaye, P. Marecot, and C. T. Williams, “Synthesis and Characterization of Dendrimer-Derived Supported Iridium Catalysts,” J. Phys. Chem. C 112(36), 13 837–13 845 (2008).

    CAS  Google Scholar 

  156. H. Xie, J. Y. Howe, V. Schwartz, J. R. Monnier, C. T. Williams, and H. J. Ploehn, “Hydrodechlorination of 1,2-Dichloroethane Catalyzed by Dendrimer-Derived Pt-Cu/SiO2 Catalysts,” J. Catal. 259(1), 111–122 (2008).

    CAS  Google Scholar 

  157. P. B. Amama, B. A. Cola, T. D. Sands, X. Xu, and T. S. Fisher, “Dendrimer-Assisted Controlled Growth of Carbon Nanotubes for Enhanced Thermal Interface Conductance,” Nanotechnology 18(38), 385 303/1–385 303/4 (2007).

    CAS  Google Scholar 

  158. A. K. Diallo, C. Ornelas, L. Salmon, J. R. Aranzaes, and D. Astruc, “’Homeopathic’ Catalytic Activity and Atom-Leaching Mechanism in Miyaura-Suzuki Reactions under Ambient Conditions with Precise Dendrimer-Stabilized Pd Nanoparticles,” Angew. Chem., Int. Ed. 46(45), 8644–8648 (2007).

    CAS  Google Scholar 

  159. J. Hagen, Industrial Catalysis: A Practical Approach (Wiley, Weinheim, Germany, 1999).

    Google Scholar 

  160. L. M. Bronstein, “Nanoparticles in Nanostructured Polymers,” in Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (American Scientific Publishers, Los Angeles, CA, United States, 2004), pp. 193–206.

    Google Scholar 

  161. Y.-M. Chung and H.-K. Rhee, “Synthesis and Catalytic Applications of Dendrimer-Templated Bimetallic Nanoparticles,” Catal. Surv. Asia 8(3), 211–223 (2004).

    CAS  Google Scholar 

  162. L. M. Bronstein, S. N. Sidorov, and P. M. Valetsky, “Nanostructured Polymer Systems as Nanoreactors for Nanoparticle Formation,” Usp. Khim. 73(5), 542–558 (2004).

    Google Scholar 

  163. Y.-M. Chung and H.-K. Rhee, “Internal/External Use of Dendrimer in Catalysis,” Korean J. Chem. Eng. 21(1), 81–97 (2004).

    CAS  Google Scholar 

  164. R. Andres, E. de Jesus, and J. C. Flores, “Catalysts Based on Palladium Dendrimers,” New J. Chem. 31(7), 1161–1191 (2007).

    CAS  Google Scholar 

  165. T. Mizugaki, M. Murata, S. Fukubayashi, T. Mitsudome, K. Jitsukawa, and K. Kaneda, “PAMAM Dendron-Stabilized Palladium Nanoparticles: Effect of Generation and Peripheral Groups on Particle Size and Hydrogenation Activity,” Chem. Commun. (Cambridge), No. 2, 241–243 (2008).

  166. C. Ornelas, J. Ruiz, L. Salmon, and D. Astruc, “Sulphonated “Click” Dendrimer-Stabilized Palladium Nanoparticles as Highly Efficient Catalysts for Olefin Hydrogenation and Suzuki Coupling Reactions under Ambient Conditions in Aqueous Media,” Adv. Synth. Catal. 350(6), 241–243 (2008).

    Google Scholar 

  167. L. Wu, Z.-W. Li, F. Zhang, Y.-M. He, and Q.-H. Fan, “Air-Stable and Highly Active Dendritic Phosphine Oxide-Stabilized Palladium Nanoparticles: Preparation, Characterization, and Applications in the Carbon-Carbon Bond Formation and Hydrogenation Reactions,” Adv. Synth. Catal. 350(6), 846–862 (2008).

    CAS  Google Scholar 

  168. W. Zhang, L. Li, Y. Du, X. Wang, and P. Yang, “Gold/Platinum Bimetallic Core/Shell Nanoparticles Stabilized by a Fréchet-Type Dendrimer: Preparation and Catalytic Hydrogenations of Phenylaldehydes and Nitrobenzenes,” Catal. Lett. 127(3–4), 429–436 (2009).

    CAS  Google Scholar 

  169. L. M. Bronstein, D. M. Chernyshov, I. O. Volkov, M. G. Ezernitskaya, P. M. Valetsky, V. G. Matveeva, and E. M. Sulman, “Structure and Properties of Bimetallic Colloids Formed in Polystyrene-block-Poly-4-Vinylpyridine Micelles: Catalytic Behavior in Selective Hydrogenation of Dehydrolinalool,” J. Catal. 196, 302–314 (2000).

    CAS  Google Scholar 

  170. W. Huang, J. N. Kuhn, C.-K. Tsung, Y. Zhang, S. E. Habas, P. Yang, and G. A. Somorjai, “Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation,” Nano Lett. 8(7), 2027–2034 (2008).

    CAS  PubMed  ADS  Google Scholar 

  171. J. N. Kuhn, W. Huang, C.-K. Tsung, Y. Zhang, and G. A. Somorjai, “Structure Sensitivity of Carbon-Nitrogen Ring Opening: Impact of Platinum Particle Size from Below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica,” J. Am. Chem. Soc. 130(43), 14026–14027 (2008).

    CAS  PubMed  Google Scholar 

  172. J. Ledesma-Garcia, I. L. Escalante Garcia, F. J. Rodriguez, T. W. Chapman, and L. A. Godinez, “Immobilization of Dendrimer-Encapsulated Platinum Nanoparticles on Pretreated Carbo-Fiber Surfaces and Their Application for Oxygen Reduction,” J. Appl. Electrochem. 38(4), 515–522 (2008).

    CAS  Google Scholar 

  173. S. K. Gayen, M. Brito, B. B. Das, G. Comanescu, X. C. Liang, M. Alrubaiee, R. R. Alfano, C. Gonzalez, A. H. Byro, D. L. V. Bauer, and V. Balogh-Nair, “Synthesis and Optical Spectroscopy of a Hybrid Cadmium Sulfide-Dendrimer Nanocomposite,” J. Opt. Soc. Am. B 24(12), 3064–3071 (2007).

    CAS  ADS  Google Scholar 

  174. Y. Liu, M. Kim, Y. Wang, Y. A. Wang, and X. Peng, “Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core-Shell Dendron Nanocrystals with Carboxylate Anchoring Groups,” Langmuir 22(14), 6341–6345 (2006).

    CAS  PubMed  Google Scholar 

  175. J. Zheng, J. T. Petty, and R. M. Dickson, “High-Quantum-Yield Blue Emission from Water-Soluble Au8 Nanodots,” J. Am. Chem. Soc. 125, 7780–7781 (2003).

    CAS  PubMed  Google Scholar 

  176. W. I. Lee, Y. Bae, and A. J. Bard, “Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles,” J. Am. Chem. Soc. 126(27), 8358–8359 (2004).

    CAS  PubMed  Google Scholar 

  177. M. Imamura, T. Miyashita, A. Tanaka, H. Yasuda, Y. Negishi, and T. Tsukuda, “Electronic Structure of Dendrimer-Encapsulated Au Nanocluster,” Eur. Phys. J., D 43(1–3), 233–236 (2007).

    CAS  ADS  Google Scholar 

  178. T. Tozawa, “Dendron-Grafted Sulfur-Terminated Phenyleneethynylene Molecular Rods and Blue Luminescence Self-Assembly with Au Nanoparticles,” Chem. Commun. (Cambridge), No. 17, 1904–1905 (2004).

    Google Scholar 

  179. X. Y. Shi, T. R. Ganser, K. Sun, L. P. Balogh, and J. R. Baker, “Characterization of Crystalline Dendrimer-Stabilized Gold Nanoparticles,” Nanotechnology 17(4), 1072–1078 (2006).

    CAS  ADS  Google Scholar 

  180. L. P. Capadona, J. Zheng, J. I. Gonzalez, T.-H. Lee, S. A. Patel, and R. M. Dickson, “Nanoparticle-Free Single Molecule Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 94(5), 058 301/1–058 301/4 (2005).

    CAS  Google Scholar 

  181. C.-H. Chou, H.-S. Wang, K.-H. Wei, and J. Y. Huang, “Thiophenol-Modified CdS Nanoparticles Enhance the Luminescence of Benzoxyl Dendron-Substituted Polyfluorene Copolymers,” Adv. Funct. Mater. 16(7), 909–916 (2006).

    CAS  Google Scholar 

  182. S.-H. Hwang, C. N. Moorefield, P. Wang, K.-U. Jeong, S. Z. D. Cheng, K. K. Kotta, and G. R. Newkome, “Dendron-Tethered and Templated CdS Quantum Dots on Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 128(23), 7505–7509 (2006).

    CAS  PubMed  Google Scholar 

  183. Y. Wang, X. Xie, and T. Goodson III, “Enhanced Third-Order Nonlinear Optical Properties in Dendrimer-Metal Nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005).

    CAS  PubMed  ADS  Google Scholar 

  184. R. C. Advincula, “Sweeping Changes: Molecular Polymer Brushes and Hybrid Dendrons Offer Unique Properties,” Eur. Coat. J. 12, 29–34 (2008).

    Google Scholar 

  185. J. Locklin, D. Patton, S. Deng, A. Baba, M. Millan, and R. C. Advincula, “Conjugated Oligothiophene-Dendron-Capped CdSe Nanoparticles: Synthesis and Energy Transfer,” Chem. Mater. 16(24), 5187–5193 (2004).

    CAS  Google Scholar 

  186. E. Strable, J. W. M. Bulte, B. Moskowitz, K. Vivekanandan, M. Allen, and T. Douglas, “Synthesis and Characterization of Soluble Iron Oxide-Dendrimer Composites,” Chem. Mater. 13(6), 2201–2209 (2001).

    CAS  Google Scholar 

  187. B. L. Frankamp, A. K. Boal, M. T. Tuominen, and V. M. Rotello, “Direct Control of the Magnetic Interaction between Iron Oxide Nanoparticles through Dendrimer-Mediated Self-Assembly,” J. Am. Chem. Soc. 127(27), 9731–9735 (2005).

    CAS  PubMed  Google Scholar 

  188. M. R. Knecht and R. M. Crooks, “Magnetic Properties of Dendrimer-Encapsulated Iron Nanoparticles Containing an Average of 55 and 147 Atoms,” New J. Chem. 31(7), 1349–1353 (2007).

    CAS  Google Scholar 

  189. B. Donnio, P. Garcia-Vazquez, J.-L. Gallani, D. Guillon, and E. Terazzi, “Dendronized Ferromagnetic Gold Nanoparticles Self-Organized in a Thermotropic Cubic Phase,” Adv. Mater. (Weinheim, Ger.) 19(21), 3534–3539 (2007).

    CAS  Google Scholar 

  190. A. Bielinska, J. D. Eichman, I. Lee, J. Baker, and L. Balogh, “Imaging {Au0-PAMAM} Gold-Dendrimer Nanocomposites in Cells,” J. Nanopart. Res. 4(5), 395–403 (2002).

    CAS  Google Scholar 

  191. V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-Based Nanoprobe for Dual Modality Magnetic Resonance and Fluorescence Imaging,” Nano Lett. 6(7), 1459–1463 (2006).

    CAS  PubMed  ADS  Google Scholar 

  192. P. Debbage and W Jaschke, “Molecular Imaging with Nanoparticles: Giant Roles for Dwarf Actors,” Histochem. Cell Biol. 130(5), 845–875 (2008).

    CAS  PubMed  Google Scholar 

  193. R. Shukla, E. Hill, X. Shi, J. Kim, M. C. Muniz, K. Sun, and J. R. Baker, Jr., “Tumor Microvasculature Targeting with Dendrimer-Entrapped Gold Nanoparticles,” Soft Matter 4(11), 2160–2163 (2008).

    CAS  Google Scholar 

  194. N. Hussain, B. Singh, T. Sakthivel, and A. T. Florence, “Formulation and Stability of Surface-Tethered DNA-Gold-Dendron Nanoparticles,” Int. J. Pharm. 254(1), 27–31 (2003).

    CAS  PubMed  Google Scholar 

  195. P. S. Ghosh, C.-K. Kim, G. Han, N. S. Forbes, and V. M. Rotello, “Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles,” ACS Nano 2(11), 2213–2218 (2008).

    CAS  PubMed  Google Scholar 

  196. A. C. Wisher, I. Bronstein, and V. Chechik, “Thiolated PAMAM Dendrimer-Coated CdSe/ZnSe Nanoparticles as Protein Transfection Agents,” Chem. Commun. (Cambridge), No. 15, 1637–1639 (2006).

    Google Scholar 

  197. C.-T. Chen, Y. S. Munot, S. B. Salunke, Y.-C. Wang, R.-K. Lin, C.-C. Lin, C.-C. Chen, and Y.-H. Liu, “A Triantennary Dendritic Galactoside-Capped Nanohybrid with a ZnS/CdSe Nanoparticle Core as a Hydrophilic, Fluorescent, Multivalent Probe for Metastatic Lung Cancer Cells,” Adv. Funct. Mater. 18(4), 527–540 (2008).

    CAS  Google Scholar 

  198. S. Link and M. A. El-Sayed, “Shape and Size Dependence of Radiative, Non-Radiative, and Photothermal Properties of Gold Nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).

    CAS  Google Scholar 

  199. M. Events, V. Saini, J. L. Leddon, R. J. Kok, M. Stoff-Khalili, M. A. Preuss, C. L. Millican, G. Perkins, J. M. Brown, H. Bagaria, D. E. Nikles, D. T. Johnson, V. P. Zharov, and D. T. Curiel, “Covalently Linked Au Nanoparticles to a Viral Vector: Potential for Combined Photothermal and Gene Cancer Therapy,” Nano Lett. 6, 587–591 (2006).

    ADS  Google Scholar 

  200. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface Plasmon Resonance Scattering and Absorption of Anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer,” Nano Lett. 5, 829–834 (2005).

    CAS  PubMed  ADS  Google Scholar 

  201. Y. Haba, C. Kojima, A. Harada, T. Ura, H. Horinaka, and K. Kono, “Preparation of Poly(ethylene glycol)-Modified Poly(amido amine) Dendrimers Encapsulating Gold Nanoparticles and Their Heat-Generating Ability,” Langmuir 23(10), 5243–5246 (2007).

    CAS  PubMed  Google Scholar 

  202. F. Gao, B.-F. Pan, W.-M. Zheng, L.-M. Ao, and H.-C. Gu, “Study of Streptavidin Coated onto PAMAM Dendrimer Modified Magnetite Nanoparticles,” J. Magn. Magn. Mater. 293(1), 48–54 (2005).

    CAS  ADS  Google Scholar 

  203. B.-F. Pan, F. Gao, and H.-C. Gu, “Dendrimer Modified Magnetite Nanoparticles for Protein Immobilization,” J. Colloid Interface Sci. 284(1), 1–6 (2005).

    CAS  PubMed  Google Scholar 

  204. B. Pan, D. Cui, Y. Sheng, C. Ozkan, F. Gao, R. He, Q. Li, P. Xu, and T. Huang, “Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System,” Cancer Res. 67(17), 8156–8163 (2007).

    CAS  PubMed  Google Scholar 

  205. B.-F. Pan, F. Gao, and L.-M. Ao, “Investigation of Interactions between Dendrimer-Coated Magnetite Nanoparticles and Bovine Serum Albumin,” J. Magn. Magn. Mater. 293(1), 252–258 (2005).

    CAS  ADS  Google Scholar 

  206. X. Shi, T. P. Thomas, L. A. Myc, A. Kotlyar, and J. R. Baker, Jr., “Synthesis, Characterization, and Intracellular Uptake of Carboxyl-Terminated Poly(amidoamine) Dendrimer-Stabilized Iron Oxide Nanoparticles,” Phys. Chem. Chem. Phys. 9(42), 5712–5720 (2007).

    CAS  PubMed  Google Scholar 

  207. S. H. Wang, X. Shi, M. van Antwerp, Z. Cao, S. D. Swanson, X. Bi, and J. R. Baker, Jr., “Dendrimer-Functionalized Iron Oxide Nanoparticles for Specific Targeting and Imaging of Cancer Cells,” Adv. Funct. Mater. 17(16), 3043–3050 (2007).

    CAS  Google Scholar 

  208. X. Shi, S. H. Wang, S. D. Swanson, S. Ge, Z. Cao, M. E. van Antwerp, K. J. Landmark, and J. R. Baker, Jr., “Dendrimer-Functionalized Shell-Crosslinked Iron Oxide Nanoparticles for In-Vivo Magnetic Resonance Imaging of Tumors,” Adv. Mater. 20(9), 1671–1678 (2008).

    CAS  Google Scholar 

  209. K. J. Landmark, S. DiMaggio, J. Ward, C. Kelly, S. Vogt, S. Hong, A. Kotlyar, A. Myc, T. P. Thomas, J. E. Penner-Hahn, J. R. Baker, M. M. Banaszak Holl, and B. G. Orr, “Synthesis, Characterization, and In Vitro Testing of Superparamagnetic Iron Oxide Nanoparticles Targeted Using Folic Acid-Conjugated Dendrimers,” ACS Nano 2(4), 773–783 (2008).

    CAS  PubMed  Google Scholar 

  210. A. L. Martin, L. M. Bernas, B. K. Rutt, P. J. Foster, and E. R. Gillies, “Enhanced Cell Uptake of Superparamagnetic Iron Oxide Nanoparticles Functionalized with Dendritic Guanidines,” Bioconjugate Chem. 19(12), 2375–2384 (2008).

    CAS  Google Scholar 

  211. J. Yu, H. Zhao, L. Ye, H. Yang, S. Ku, N. Yang, and N. Xiao, “Effect of Surface Functionality of Magnetic Silica Nanoparticles on the Cellular Uptake by Glioma Cells In Vitro” J. Mater. Chem. 19(9), 1265–1270 (2009).

    CAS  Google Scholar 

  212. M.-C. Daniel, J. Ruiz, S. Nlate, J. Palumbo, J.-C. Blais, and D. Astruc, “Gold Nanoparticles Containing Redox-Active Supramolecular Dendrons That Recognize H2PO4−,” Chem. Commun. (Cambridge), No. 19, 2000–2001 (2001).

  213. M.-C. Daniel, J. Ruiz, S. Nlate, J.-C. Blais, and D. Astruc, “Nanoscopic Assemblies between Supramolecular Redox Active Metallodendrons and Gold Nanoparticles: Synthesis, Characterization, and Selective Recognition of H2PO4−, HSO4−, and Ade-nosine-5′-Triphosphate (ATP2-) Anions,” J. Am. Chem. Soc. 125(9), 2617–2628 (2003).

    CAS  PubMed  Google Scholar 

  214. N. Krasteva, Y. Fogel, R. E. Bauer, K. Mullen, Y. Joseph, N. Matsuzawa, A. Yasuda, and T. Vossmeyer, “Vapor Sorption and Electrical Response of Au-Nanoparticle-Dendrimer Composites,” Adv. Funct. Mater. 17(6), 881–888 (2007).

    CAS  Google Scholar 

  215. T. Vossmeyer, B. Guse, I. Besnard, R. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14, 238 (2002).

    CAS  Google Scholar 

  216. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).

    CAS  ADS  Google Scholar 

  217. N. Krasteva, B. Guse, I. Besnard, A. Yasuda, and T. Vossmeyer, “Gold Nanoparticle/PPI-Dendrimer Based Chemiresistors Vapor-Sensing Properties as a Function of the Dendrimer Size,” Sens. Actuators, B 92(1—2), 137–143 (2003).

    Google Scholar 

  218. J. Das, M. A. Aziz, and H. Yang, “A Nanocatalyst-Based Assay for Proteins: DNA-Free Ultrasensitive Electrochemical Detection Using Catalytic Reduction of p-Nitrophenol by Gold-Nanoparticle Labels,” J. Am. Chem. Soc. 128(50), 16 022–16 023 (2006).

    CAS  Google Scholar 

  219. H. Zhu, Y. Zhu, X. Yang, and C. Li, “Multiwalled Carbon Nanotubes Incorporated with Dendrimer Encapsulated with Pt Nanoparticles: An Attractive Material for Sensitive Biosensors,” Chem. Lett. 35(3), 326–327 (2006).

    CAS  Google Scholar 

  220. Y. Zhu, H. Zhu, X. Yang, L. Xu, and C. Li, “Sensitive Biosensors Based on (Dendrimer Encapsulated Pt Nanoparticles)/Enzyme Multilayers,” Electroanalysis 19(6), 698–703 (2007).

    CAS  Google Scholar 

  221. L. Xu, Y. Zhu, L. Tang, X. Yang, and C Li, “Dendrimer-Encapsulated Pt Nanoparticles/Polyaniline Nanofibers for Glucose Detection,” J. Appl. Polym. Sci. 109(3), 1802–1807 (2008).

    CAS  Google Scholar 

  222. M. J. A. Shiddiky, M. A. Rahman, and Y.-B. Shim, “Hydrazine-Catalyzed Ultrasensitive Detection of DNA and Proteins,” Anal. Chem. 79(17), 6886–6890 (2007).

    CAS  PubMed  Google Scholar 

  223. M. J. A. Shiddiky, M. A. Rahman, C. S. Cheol, and Y.-B. Shim, “Fabrication of Disposable Sensors for Biomolecule Detection Using Hydrazine Electrocatalyst,” Anal. Biochem. 379(2), 170–175 (2008).

    CAS  PubMed  Google Scholar 

  224. C. Park, M. S. Im, S. Lee, J. Lim, and C. Kim, “Tunable Fluorescent Dendron-Cyclodextrin Nanotubes for Hybridization with Metal Nanoparticles and Their Biosensory Function,” Angew. Chem., Int. Ed. 47(51), 9922–9926 (2008).

    CAS  Google Scholar 

  225. M. A. Rahman, H.-B. Noh, and Y.-B. Shim, “Direct Electrochemistry of Laccase Immobilized on Au Nanoparticles Encapsulated-Dendrimer Bonded Conducting Polymer: Application for a Catechin Sensor,” Anal. Chem. 80(21), 8020–8027 (2008).

    CAS  PubMed  Google Scholar 

  226. T. Selvaraju, J. Das, K. Jo, K. Kwon, C.-H. Huh, T. K. Kim, and H. Yang, “Nanocatalyst-Based Assay Using DNA-Conjugated Au Nanoparticles for Electrochemical DNA Detection,” Langmuir 24(17), 9883–9888 (2008).

    CAS  PubMed  Google Scholar 

  227. R. C. Triulzi, M. Micic, J. Orbulescu, S. Giordani, B. Mueller, and R. M. Leblanc, “Antibody-Gold Quantum Dot-PAMAM Dendrimer Complex as an Immunoglobulin Immunoassay,” Analyst (Cambridge) 133(5), 667–672 (2008).

    CAS  ADS  Google Scholar 

  228. S. Chandra, K. S. Lokesh, A. Nicolai, and H. Lang, “Dendrimer-Rhodium Nanoparticle Modified Glassy Carbon Electrode for Amperometric Detection of Hydrogen Peroxide,” Anal. Chim. Acta 632(1), 63–68 (2009).

    CAS  PubMed  Google Scholar 

  229. S. R. Puniredd, Y. K. Wai, N. Satyanarayana, S. K. Sinha, and M. P. Srinivasan, “Tribological Properties of Nanoparticle-Laden Ultrathin Films Formed by Covalent Molecular Assembly,” Langmuir 23(16), 8299–8303 (2007).

    CAS  PubMed  Google Scholar 

  230. S. R. Puniredd, S. Weiyi, and M. P. Srinivasan, “Pd-Pt and Fe-Ni Nanoparticles Formed by Covalent Molecular Assembly in Supercritical Carbon Dioxide,” J. Colloid Interface Sci. 320(1), 333–340 (2008).

    CAS  PubMed  Google Scholar 

  231. C. A. Nijhuis, N. Oncel, J. Huskens, H. J. W. Zandvliet, B. J. Ravoo, B. Poelsema, and D. N. Reinhoudt, “Room-Temperature Single-Electron Tunneling in Dendrimer-Stabilized Gold Nanoparticles Anchored at a Molecular Printboard,” Small 2(12), 1422–1426 (2006).

    CAS  PubMed  Google Scholar 

  232. C. K. Kim, W.-J. Joo, H. J. Kim, E. S. Song, J. Kim, S. Lee, C. Park, and C. Kim, “Gold Nanoparticles Passivated with π-Conjugated Dendrons and Their Electrical Bistability,” Synth. Met. 158(8–9), 359–363 (2008).

    CAS  Google Scholar 

  233. K. K. Bouldin, E. R. Menzel, M. Takatsu, and R. H. Murdosk, “Diimide-Enhansed Fingerprint Detection with Photoluminescent CdS/Dendrimer Nanocomposites,” J. Forensic Sci. 45(6), 1239–1242 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Bronstein.

Additional information

Original Russian Text © L.M. Bronstein, Z.B. Shifrina, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronstein, L.M., Shifrina, Z.B. Nanoparticles in dendrimers: From synthesis to application. Nanotechnol Russia 4, 576–608 (2009). https://doi.org/10.1134/S1995078009090031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078009090031

Keywords

Navigation