Skip to main content
Log in

Nanocomposite membrane films on the basis of ether of cellulose and tetraethoxysilan

  • Experiment
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Hybrid nanocomposite membrane films with different silicon contents (4.5–12.3%) are acquired by the hydrolytic polycondensation of tetraethoxysilan (TEOS) in 4% solution of cellulose diacetate (CDA) and ethylcellulose (ECel) in organic solvents (acetone and tetrahydrofuran (THF)). Fourier IR spectroscopy is used to confirm the formation of a Si-network with Si-O-Si bonds that are linked with the cellulose derivatives by H-bonds. Hybrid films are insoluble in aqueous solutions containing 5–20 vol % of an organic component. Atomic force microscopy is used to confirm the presence of nanosized structures on the surfaces of the obtained films. The sizes of these structures depend on the polymer nature ratio of polymer and TEOS in synthesis, and they reduce as the Si content in the film increases. The equilibrium degree of swelling of hybrid films and a coefficient of diffusion of an organic substance from organic-water solutions (acetone water or THF water) are highest for the films obtained at the equimolar ratio polymer-TEOS in synthesis. The thermodynamic parameters of the interaction between hybrid films (Flory-Huggins parameter) with the liquid medium, as well as the factor of the relation THF from the THF-water solutions in Ecel/TEOS films, are calculated. Correlations of the structure and composition of hybrid films and their behavior in organic-water solutions are shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mudler, Basic Principles of Membrane Technology (Kluwer, London, 1995; Mir, Moscow, 1999).

    Google Scholar 

  2. Nanofiltration: Principles and Applications, Ed. by A. I. Schäfer, A. G. Fane, and T. D. Waite (Elsevier, Oxford, United Kingdom, 2005).

    Google Scholar 

  3. L. S. White, J. Membr. Sci. 286(1), 26 (2006).

    Article  CAS  Google Scholar 

  4. D. Bhanushali, S. Kloos, and D. Bhattacharyya, J. Membr. Sci. 208(2), 343 (2002).

    Article  CAS  Google Scholar 

  5. J. P. Robinson, E. S. Tarleton, C. R. Millington, and A. Nijmeier, J. Membr. Sci. 230(1), 29 (2004).

    Article  CAS  Google Scholar 

  6. M. Y. Kariduraganavar, S. S. Kulkarni, and A. A. Kitter, J. Membr. Sci. 246(1), 83 (2005).

    Article  CAS  Google Scholar 

  7. R. Guo, Ch. Hu, F. Pau, H. Wu, and Z. Jiang, J. Membr. Sci. 247(3), 254 (2006).

    Google Scholar 

  8. S. Grandi, A. Magistris, P. Mustarelly, E. Quartarone, C. Tomasi, and L. Meda, J. Non-Cryst. Solids 3522, 273 (2006).

    Article  ADS  Google Scholar 

  9. S. Sh. Rashidova, D. Sh. Shakarova, O. N. Ruzimuradov, D. T. Satubaldieva, S. V. Zalyalieva, O. A. Shpigun, V. P. Varlamov, and B. D. Kabulov, J. Chromatogr. 800(1–2), 49 (2004).

    CAS  Google Scholar 

  10. D. Anjali Devi, B. Smitha, S. Sridhar, and T. M. Aminabhavi, J. Membr. Sci. 262(1–2), 91 (2005).

    Article  CAS  Google Scholar 

  11. S. S. Shojaie, T. G. Rials, and S. S. Kelley, J. Appl. Polym. Sci. 58(8), 1263 (1995).

    Article  CAS  Google Scholar 

  12. R. A. Zoppi and M. C. Goncalves, J. Appl. Polym. Sci. 84(12), 2196 (2004).

    Article  Google Scholar 

  13. S. Sequeira, D. V. Evtuguin, Y. Portugal, and A. P. Esculcas, Mater. Sci. Eng., C 27(2), 172 (2007).

    Article  CAS  Google Scholar 

  14. S. Yano, Polymer 35(25), 5565 (1994).

    Article  CAS  Google Scholar 

  15. M. G. Voronkov, V. P. Mileshkevich, and Yu. A. Yuzhelevskii, The Siloxane Bond (Nauka, Novosibirsk, 1976; Plenum, New York, 1978).

    Google Scholar 

  16. A. P. Kreshkov, V. A. Borg, E. A. Bondarevskaya, L. V. Myshlyaeva, S. V. Syavtsillo, and V. T. Shemyatenkova, Practical Guide for Analysis of Monomeric and Polymeric Organosilicon Compounds (Goskhimizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  17. K. Nakanishi, Infrared Absorption Spectroscopy (Holden Day, San Francisco, CA, United States, 1962; Mir, Moscow, 1965).

    Google Scholar 

  18. S. S. Ivanchev and A. N. Ozerin, Vysokomol. Soedin., Ser. B 48(8) 1531 (2006) [Polym. Sci., Ser. B 48 (8), 213 (2006)].

    CAS  Google Scholar 

  19. A. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers: Methods of Measurement (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  20. A. A. Svittsov, Introduction to Membrane Technology (DeLi print, Moscow, 2007) [in Russian].

    Google Scholar 

  21. A. V. Volkov, D. F. Stamatialis, V. S. Khotimsky, V. V. Volkov, M. Wessling, and N. A. Plate, J. Membr. Sci. 281(1–2), 351 (2006).

    Article  CAS  Google Scholar 

  22. B. van der Bruggen, J. C. Jansen, A. Figoli, J. Greens, D. van Baelen, E. Drioli, and C. Vandecasteele, J. Phys. Chem. B 108, 13 273 (2004).

    Google Scholar 

  23. J. Greens, K. Peeters, B. van der Bruggen, and C. Vandecasteele, J. Membr. Sci 255(1–2), 255 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Suvorova.

Additional information

Original Russian Text © A.I. Suvorova, A.L. Suvorov, M.V. Ivanenko, E.I. Shishkin, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suvorova, A.I., Suvorov, A.L., Ivanenko, M.V. et al. Nanocomposite membrane films on the basis of ether of cellulose and tetraethoxysilan. Nanotechnol Russia 4, 102–108 (2009). https://doi.org/10.1134/S199507800901011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507800901011X

Keywords

Navigation