Skip to main content
Log in

Conversion of Low Caloric Fuels to Synthesis Gas in the Filtration Combustion Mode in a Moving Layer of a Granulated Heat Carrier

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The possibility of converting low-caloric fuels into synthesis gas by their partial oxidation in a moving porous layer of a granular heat carrier is theoretically studied. The process is considered in a new version of the reactor with a counterflow of a solid granular heat carrier and reacting gases. A feature of the reactor is the presence of an additional heat exchanger, where the oxidizer gas is preheated due to the residual heat of the solid heat carrier discharged from the reactor. Theoretically, in the approximation of the absence of heat loss and established thermodynamic equilibrium in the products, the macrokinetic modes of the process are considered depending on the main control parameters: the flow rate of the oxidizer gas, the flow rate of steam, the flow rate of the solid heat carrier, and the fuel composition. A quantitative calculation of the temperature and composition of the products in various combustion modes is carried out for the air-steam conversion of isopropanol and the air conversion of low-caloric pyrolysis gas. It is shown that the scheme under consideration provides a possibility to convert low-caloric gas at a temperature above 1500 K with a chemical efficiency of gasification over 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Strictly speaking, since isopropanol decomposes at a high temperature, we should use the enthalpy of the decomposition products which reach the combustion zone. In this case, the enthalpy of the pyrolysis reaction will be a term in the heat capacity of isopropanol.

REFERENCES

  1. V. S. Arutyunov, L. N. Strekova, V. I. Savchenko, I. V. Sedov, A. V. Nikitin, O. L. Eliseev, M. V. Kryuchkov, and A. L. Lapidus, Pet. Chem. 59, 370 (2019). https://doi.org/10.1134/S0965544119040029

    Article  CAS  Google Scholar 

  2. H. N. Abubackar, M. C. Veiga, and C. Kennes, in Sustainable Resource Recovery and Zero Waste Approaches, Ed. by M. J. Taherzadeh, K. Bolton, J. Wong, and A. Pandey (Elsevier, UK, 2019), p. 207. https://doi.org/10.1016/B978-0-444-64200-4.00015-3

  3. J. Huang, K. G. Schmidt, and Z. Bian, Energies 4, 1163 (2011). https://doi.org/10.3390/en4081163

    Article  CAS  Google Scholar 

  4. W. Zhang, H. Liu, I. Ul Hai, Y. Neubauer, P. Schröder, H. Oldenburg, A. Seilkopf, and A. Kölling, Int. J. Low-Carbon Technol. 7 (2), 69 (2012). https://doi.org/10.1093/ijlct/ctr046

    Article  CAS  Google Scholar 

  5. V. G. Sister, A. A. Borisov, K. Ya. Troshin, et al., Khim. Fiz. 25 (1), 61 (2006).

    CAS  Google Scholar 

  6. V. S. Arutyunov and L. N. Strekova, Russ. J. Phys. Chem. B 6, 486 (2012).

    Article  CAS  Google Scholar 

  7. S. M. Aldoshin, V. S. Arutyunov, V. I. Savchenko, I. V. Sedov, A. V. Nikitin and I. G. Fokin, Russ. J. Phys. Chem. B 15, 498 (2021).

    Article  CAS  Google Scholar 

  8. A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, and S. P. Medvedev, Russ. J. Phys. Chem. B 15, 678 (2021).

    Article  CAS  Google Scholar 

  9. A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, S. P. Medvedev, S. V. Khomik, S. K. Petrov, and M. V. Chernyshov, Russ. J. Phys. Chem. B 14, 654 (2020).

    Article  CAS  Google Scholar 

  10. S. V. Glazov, V. M. Kislov, A. V. Razmyslov, and M. V. Salganskaya, Russ. J. Appl. Chem. 92, 1020 (2019). https://doi.org/10.1134/S107042721907019X

    Article  CAS  Google Scholar 

  11. S. V. Glazov, Theor. Found. Chem. Eng. 53, 51 (2019). https://doi.org/10.1134/S0040579519010032

    Article  CAS  Google Scholar 

  12. S. Dorofeenko and E. Polianczyk, Chem. Eng. J. 292, 183 (2016). https://doi.org/10.1016/j.cej.2016.02.013

    Article  CAS  Google Scholar 

  13. E. Polianczyk and S. Dorofeenko, Int. J. Hydrogen Energy 44, 4079 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.117

    Article  CAS  Google Scholar 

  14. S. S. Kostenko, E. V. Polianchik, A. A. Karnaukh, A. N. Ivanova, and G. B. Manelis, Khim. Fiz. 25 (5), 43 (2006).

    CAS  Google Scholar 

  15. L. V. Zyubin and K. D. Bakanov, RF Patent No. 2733777, Rospatent No. 28 (2020).

  16. S. Dorofeenko and E. Polianczyk, Int. J. Hydrogen Energy 44, 30039 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.208

    Article  CAS  Google Scholar 

  17. V. S. Arutyunov, Khim. Fiz. 24 (9), 76 (2005).

    Google Scholar 

  18. Thermodynamical Properties of Individual Substances, The Handbook, Ed. by V. P. Glushko, L. V. Gurvich, G. A. Bergman, et al. (Nauka, Moscow, 1978, 1981) [in Russian].

  19. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (2018). http://combustion.berkeley.edu/gri-mech/version30/text30.html.

  20. J. Chao and F. D. Rossini, J. Chem. Eng. Data 10, 374 (1965). https://doi.org/10.1021/je60027a022

    Article  CAS  Google Scholar 

  21. D. I. Mendeleev, Basics of the Factory Industry (Tipogr. V. Demakova, St. Petersburg, 1897), No. 1, p. 90 [in Russian].

  22. M. B. Ravich, Fuel Efficiency (Nauka, Moscow, 1977), p. 36 [in Russian].

    Google Scholar 

Download references

Funding

This study was partly supported by the Russian Foundation for Basic Research in cooperation with the TUBITAK agency as part of research project no. 21-51-46007. This study was carried out in relation to a state order (registration number  AAAA-A19-119022690098-3, topic 0089-2019-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Dorofeenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeenko, S.O., Polianczyk, E.V. Conversion of Low Caloric Fuels to Synthesis Gas in the Filtration Combustion Mode in a Moving Layer of a Granulated Heat Carrier. Russ. J. Phys. Chem. B 16, 242–252 (2022). https://doi.org/10.1134/S199079312202004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312202004X

Keywords:

Navigation