Skip to main content
Log in

Water Activated by a Microwave Plasma Argon Jet as a Factor Stimulating the Germination of Plant Seeds

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Using the new electrodeless microwave technology for generating plasma in an open atmosphere, solutions of hydrogen peroxide and nitrogen compounds are obtained from distilled water. The method is based on the activation of distilled water by a jet of thermal argon plasma of an electrodeless microwave discharge in air at atmospheric pressure. Plasma-activated water has a stimulating effect on seed germination and plant growth, which is much more effective than the effect of industrial hydrogen peroxide solutions with stabilizing additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. L. Miller and H. C. Urey, Science (Washington, DC, U. S.) 130 (3370), 245 (1959). https://doi.org/10.1126/science.130.3370

    Article  CAS  Google Scholar 

  2. M. S. Stark, C. Anastasi, and J. T. H. Harrison, J. Geophys. Res. 101, 6963 (1996).

    Article  CAS  Google Scholar 

  3. Y. Zuo and Y. Deng, Geochim. Cosmochim. Acta 63, 3451 (1999). https://doi.org/10.1016/S0016-7037(99)00274-4

    Article  CAS  Google Scholar 

  4. L. Wojtyla, M. Garnczarska, T. Zalewski, et al., J. Plant Physiol. 163, 1207 (2006). https://doi.org/10.1016/j.jplph.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  5. G. Barba-Espin, P. Diaz-Vivancos, M. J. Clemente-Moreno, et al., Plant Cell Environ. 33, 981 (2010). https://doi.org/10.1111/j.1365-3040.2010.02120.x

    Article  CAS  PubMed  Google Scholar 

  6. I. K. Naumova, A. I. Maksimov, and A. V. Khlyustova, Surf. Eng. Appl. Electrochem. 47 (3), 263 (2011).

    Article  Google Scholar 

  7. J. R. Duval and D. S. NeSmith, Hortscience 35, 85 (2000). https://doi.org/10.21273/HORTSCI.35.1.85

    Article  Google Scholar 

  8. A. Fridman, A. Chirokov, and A. Gutsol, J. Phys. D: Appl. Phys. 38 (2), R1 (2005). https://doi.org/10.1088/0022-3727/38/2/R01

    Article  CAS  Google Scholar 

  9. R. Brandenburg, Plasma Sources Sci. Technol. 26, 053001 (2017). https://doi.org/10.1088/1361-6595/aa6426

    Article  Google Scholar 

  10. J.-S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152 (1991).

    Article  CAS  Google Scholar 

  11. C. T. Chien and T. P. Lin, Seed Sci. Technol. 22, 231 (1994).

    Google Scholar 

  12. F. V. Breusegem, E. Vranova, J. F. Dat, and D. Inze, Plant Sci. 161, 405 (2001).

    Article  Google Scholar 

  13. M. A. Hossain, S. Bhattacharjee, S. M. Armin, et al., Front Plant Sci. 6, 420 (2015). https://doi.org/10.3389/fpls.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. N. Khan, M. Mobin, F. Mohammad, and F. J. Corpas, Nitric Oxide in Plants: Metabolism and Role in Stress Physiology (Springer, Switzerland, 2014).

    Book  Google Scholar 

  15. R. C. Jann and R. D. Amen, The Physiology and Biochemistry of Seed Dormancy and Germination, Ed. by A. A. Khan (North-Holland, Amsterdam, 1977), p. 728.

    Google Scholar 

  16. S. Z. Ismail, M. M. Khandaker, N. Mat, and A. N. Boyce, J. Agron. 14, 331 (2015). https://doi.org/10.3923/ja.2015.331.336

    Article  CAS  Google Scholar 

  17. R. Thirumdas, A. Kothakota, U. Annapure, et al., Trends Food Sci. Technol. 77, 21 (2018). https://doi.org/10.1016/j.tifs.2018.05.007

    Article  CAS  Google Scholar 

  18. G. G. Komissarov, Khim. Fiz. 22 (1), 24 (2003).

    CAS  Google Scholar 

  19. A. V. Lobanov, S. N. Kholuiskaya, and G. G. Komissarov, Khim. Fiz. 23 (5), 44 (2004).

    CAS  Google Scholar 

  20. A. V. Lobanov, S. N. Kholuiskaya, and G. G. Komissarov, Dokl. Phys. Chem. 399, 266 (2004).

    Article  CAS  Google Scholar 

  21. A. V. Lobanov, O. V. Nevrova, V. A. Ilatovskii, G. V. Sin’ko, and G. G. Komissarov, Macroheterocycles 4 (2), 132 (2011).

    Article  CAS  Google Scholar 

  22. N. B. Sul’timova, P. P. Levin, A. V. Lobanov, and A. M. Muzafarov, High Energy Chem. 47, 98 (2013).

    Article  Google Scholar 

  23. M. E. Alvarez, R. I. Pennell, P. J. Meijer, et al., Cell 92, 773 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Liu, N. Ye, R. Liu, M. Chen, and J. Zhang, J. Exp. Bot. 61, 2979 (2010). https://doi.org/10.1093/jxb/erq125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. V. Lobanov, E. N. Golubeva, E. M. Zubanova, and M. Ya. Mel’nikov, High Energy Chem. 43, 384 (2009).

    Article  CAS  Google Scholar 

  26. K. F. Sergeichev, N. A. Lukina, and N. R. Arutyunyan, Plasma Phys. Rep. 45, 551 (2019). https://doi.org/10.1134/S1063780X19060096

    Article  Google Scholar 

  27. S. D. Razumovskii, T. V. Grinevich, and G. V. Korovina, Russ. J. Phys. Chem. B 5, 797 (2011).

    Article  CAS  Google Scholar 

  28. A. V. Lobanov, N. A. Rubtsova, Yu. A. Vedeneeva, and G. G. Komissarov, Dokl. Chem. 421, 190 (2008).

    Article  CAS  Google Scholar 

  29. R. C. Weast, CRC Handbook of Chemistry, and Physics, 70th ed. (CRC, Boca Raton, FL, 1989), p. D-221.

    Google Scholar 

  30. W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, Hydrogen Peroxide, ACS Monograph (Reinhold, New York, 1955).

    Google Scholar 

  31. Yu. I. Skurlatov, E. V. Shtamm, L. N. Shishkina, A. V. Roshchin, V. O. Shvydkii, and L. V. Semenyak, Russ. J. Phys. Chem. B 14, 130 (2020). https://doi.org/10.31857/S0207401X20020132

    Article  CAS  Google Scholar 

  32. I. K. Larin, Russ. J. Phys. Chem. B 14, 336 (2020). https://doi.org/10.1134/S1990793120020086

    Article  CAS  Google Scholar 

  33. I. K. Larin, Russ. J. Phys. Chem. B 14, 344 (2020). https://doi.org/10.1134/S1990793120020256

    Article  CAS  Google Scholar 

  34. I. D. Rodionov, A. I. Rodionov, I. P. Rodionova, D. V. Shestakov, V. D. Peskov, V. V. Egorov, A. P. Kalinin and N. A. Matveeva, Russ. J. Phys. Chem. B 13, 667 (2019). https://doi.org/10.1134/S1990793119040134

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out as part of a state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic 0082–2018–0006, registration number AAAA-A18-118020890097-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Sergeichev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeichev, K.F., Lukina, N.A., Apasheva, L.M. et al. Water Activated by a Microwave Plasma Argon Jet as a Factor Stimulating the Germination of Plant Seeds. Russ. J. Phys. Chem. B 16, 84–89 (2022). https://doi.org/10.1134/S1990793122010134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010134

Keywords:

Navigation