Skip to main content
Log in

Modification of Boron Powders Used in Energy-Saturated Materials

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The structural and morphological properties of powders of commercial amorphous boron grade B modified with acetonitrile, weak nitric acid, and fluorine-containing compounds are studied by the Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), and Raman spectroscopy methods. The influence of these properties on the oxidation of powders is analyzed using thermogravimetric analysis (TGA). It is shown that the removal of the surface layer in the form of boron oxide and boric acid leads to a more complete oxidation degree of the powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. A. Andrievskii, Russ. Chem. Rev. 84, 540 (2015). https://doi.org/10.1070/RCR4469

    Article  CAS  Google Scholar 

  2. M. N. Makhov, Russ. J. Phys. Chem. B 9, 50 (2015). https://doi.org/10.1134/S199079311501008X

    Article  CAS  Google Scholar 

  3. T. Kondo, Sci. Technol. Adv. Mater. 18, 780 (2017). https://doi.org/10.1080/14686996.2017.1379856

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. K. King, Combust. Sci. Technol. 5, 155 (1972). https://doi.org/10.1080/00102207208952516

    Article  CAS  Google Scholar 

  5. G. Young, C. A. Stoltz, B. P. Mason, et al., Int. J. Energet. Mater. Chem. Propuls. 11, 451 (2012). https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2013005791

    Article  CAS  Google Scholar 

  6. G. Young, C. A. Stoltz, D. H. Mayo, et al., Combust. Sci. Technol. 185, 1261 (2013). https://doi.org/10.1080/00102202.2013.787417

    Article  CAS  Google Scholar 

  7. A. Macek and J. M. Semple, Combust. Sci. Technol. 1, 181 (1969).

    Article  CAS  Google Scholar 

  8. D. M. Chen, W. H. Hsieh, T. S. Snyder, et al., J. Propuls. Power 7, 250 (1991). https://doi.org/10.2514/3.23318

    Article  CAS  Google Scholar 

  9. R. O. Foelsche, R. L. Burton, and H. Krier, Combust. Flame 117, 32 (1999). https://doi.org/10.1016/S0010-2180(98)00080-7

    Article  CAS  Google Scholar 

  10. C. L. Yeh and K. K. Kuo, Prog. Energy Combust. Sci. 22, 511 (1996). https://doi.org/10.1016/S0360-1285(96)00012-3

    Article  CAS  Google Scholar 

  11. X. Liu, J. Gonzales, M. Schoenitz, et al., Thermochim. Acta 652, 17 (2017). https://doi.org/10.1016/j.tca.2017.03.007

    Article  CAS  Google Scholar 

  12. K.-L. Chintersingh, M. Schoenitz, and E. L. Dreizin, Combust. Flame 173, 288 (2016). https://doi.org/10.1016/j.combustflame.2016.08.027

    Article  CAS  Google Scholar 

  13. K.-L. Chintersingh, Y. Sun, M. Schoenitz, and E. L. Dreizin, Thermochim. Acta 682, 178415 (2019). https://doi.org/10.1016/j.tca.2019.178415

    Article  CAS  Google Scholar 

  14. L. Cheng, H. Yang, Y. Yang, et al., Combust. Flame 211, 456 (2020). https://doi.org/10.1016/j.combustflame.2019.10.017

    Article  CAS  Google Scholar 

  15. A. G. Korotkikh, I. V. Sorokin, E. A. Selikhova, and V. A. Arkhipov, Russ. J. Phys. Chem. B 14, 592 (2020), https://doi.org/10.1134/S1990793120040089

    Article  CAS  Google Scholar 

  16. E. T. Sandall, J. Kalman, J. N. Quigley, et al., Propuls. Power Res. 6, 243 (2017). https://doi.org/10.1016/j.jppr.2017.11.004

    Article  Google Scholar 

  17. X. Liu, K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, J. Propuls. Power. 2018, 1 (2018). https://doi.org/10.2514/1.B36315

    Article  Google Scholar 

  18. V. G. Krupkin and V. M. Shmelev, Russ. J. Phys. Chem. B 14, 973 (2020). https://doi.org/10.1134/S1990793120060214

    Article  CAS  Google Scholar 

  19. V. G. Krupkin, V. M. Shmelev, V. M. Nikolaev, and S. V. Finyakov, Russ. J. Phys. Chem. B 13, 596 (2019). https://doi.org/10.1134/S1990793119040213

    Article  CAS  Google Scholar 

  20. K.-H. Shin, K. Yu, and A. K. Gupta, in Proceedings of the AIAA Propulsion and Energy 2019 Forum, AIAA Paper No. 2019-4125. https://doi.org/10.2514/6.2019-4125

  21. Y. Guo, W. Zhang, X. Zhou, et al., J. Therm. Anal. Calorim. 113, 787 (2013). https://link.springer.com/article/10.1007%2Fs10973-012-2832-2

    Article  CAS  Google Scholar 

  22. G. Young, C. W. Roberts, and C. A. Stoltz, J. Propuls. Power 31, 386 (2015). https://doi.org/10.2514/1.B35390

    Article  Google Scholar 

  23. V. Keerthi, H. Nie, S. Pisharath, and H. H. Hng, Combust. Sci. Technol. 192 (2020). https://doi.org/10.1080/00102202.2020.1804885

  24. E. A. Lebedeva, I. L. Tutubalina, V. A. Val’tsifer, V. N. Strel’nikov, S. A. Astaf’eva, and I. V. Beketov, Combust. Explos., Shock Waves 48, 694 (2012). https://doi.org/10.1134/S0010508212060056

    Article  Google Scholar 

  25. A. N. Pivkina, N. V. Muravyev, K. A. Monogarov, D. B. Meerov, I. V. Fomenkov, E. A. Skryleva, M. Yu. Presnyakov, A. L. Vasiliev, N. I. Shishov, and Yu. M. Milekhin, Combust. Explos., Shock Waves 54, 450 (2018). https://doi.org/10.1134/S0010508218040093

    Article  Google Scholar 

  26. A. V. Ryabina and V. G. Shevchenko, Russ. J. Phys. Chem. A 92, 2302 (2018). https://doi.org/10.1134/S0036024418110341

    Article  CAS  Google Scholar 

  27. E. A. Lebedeva, K. O. Ukhin, S. A. Astaf’eva, et al., Perspekt. Mater., No. 3, 72 (2014). https://doi.org/10.30791/1028-978X

  28. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic, London, 1982).

    Google Scholar 

  29. A. V. Ryabina and V. G. Shevchenko, Russ. J. Phys. Chem. A 94, 2325 (2020). https://doi.org/10.1134/S003602442011028X

    Article  CAS  Google Scholar 

  30. W. Helmut, V. Filipov, U. Kuhlmann, et al., Sci. Technol. Adv. Mater. 11, 250 (2010). https://doi.org/10.1088/1468-6996/11/2/023001

    Article  CAS  Google Scholar 

  31. G. Parakhonskiy, N. Dubrovinskaia, L. Dubrovinsky, et al., J. Cryst. Growth 321, 162 (2011). https://doi.org/10.1016/j.jcrysgro.2011.02.036

    Article  CAS  Google Scholar 

  32. S. Zhao, Y. Wu, B. Zhou, and X. Liu, Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-53851-6

  33. A. Jain, C. Ghosh, T. R. Ravindran, et al., Bull. Mater. Sci. 36, 1323 (2013). https://doi.org/10.1007/s12034-013-0587-4

    Article  CAS  Google Scholar 

  34. A. N. Pivkina, D. B. Meerov, K. A. Monogarov, Yu. V. Frolova, and N. V. Muravyev, Combust. Explos., Shock Waves 56, 148 (2020). https://doi.org/10.1134/S0010508220020057

    Article  Google Scholar 

  35. S. K. Valluri, M. Schoenitz, and E. Dreizin, Defence Technol. 15 (1), 1 (2019). https://doi.org/10.1016/j.dt.2018.06.001

    Article  Google Scholar 

  36. M. Otto, Analytische Chemie (Wiley-VCH, Weinheim, 2011), Vol. 2.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank D.M. Kiselkov, Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences (ITKh UB RAS), for carrying out the studies on boron powders by Raman spectroscopy.

Funding

This study was carried out using the equipment of the Center for Collective Use “Investigations of Materials and Substances” of the Federal Research Center, Ural Branch, Russian Academy of Sciences.

This study was financially supported by the Russian Foundation for Basic Research as part of the scientific project no. 18-33-00170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lebedeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, E.A., Astaf’eva, S.A. & Istomina, T.S. Modification of Boron Powders Used in Energy-Saturated Materials. Russ. J. Phys. Chem. B 16, 316–322 (2022). https://doi.org/10.1134/S1990793122010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010109

Keywords:

Navigation