Skip to main content
Log in

Phospholipase A2. Methods for Activity Monitoring

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Phospholipases A2 (PLA2) are hydrolytic proteins, which cleave fatty acid off the second position (sn-2) of the phospholipid. An increased activity of PLA2 correlates with the course of many different inflammatory processes in the body. For the purpose of diagnosing and predicting pathological processes, systems for detecting the PLA2 activity are being developed. The key component of all test systems is a substrate of lipid or non-lipid nature, the breakdown of which by the enzyme leads to the appearance of analytical signal. Lipids as such do not absorb light in the visible region and do not fluoresce. Therefore, to determine the activity of PLA2, substrates with various labels are developed. Test systems for determination of the PLA2 activity can be divided into three groups, depending on the stage of the enzyme action a signal is formed at: (1) systems based on the detection of hydrolysis products; (2) systems based on the cleavage of fluorescently labeled substrates, and (3) systems based on the detection of membrane disintegration. Each of these groups has its own requirements for the structure of the substrate. This review is focused on the structure of PLA2 substrates used in systems to determine the enzyme activity; the proposed classification allows one to identify the strengths and weaknesses of existing detection systems and will be relevant when designing new test systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dennis E.A., Cao J., Hsu Y.-H., Magrioti V., Kokotos G. 2011. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev.111 (10), 6130–6185. https://doi.org/10.1021/cr200085w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vasquez A. M., Mouchlis V.D., Dennis E.A. 2018. Review of four major distinct types of human phospholipase A2. Adv. Biol. Regul.67 (3), 212–218. https://doi.org/10.1016/j.jbior.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  3. Sofogianni A., Alkagiet S., Tziomalos K. 2018. Lipoprotein-associated phospholipase A2 and coronary heart disease. Curr. Pharm. Des.24 (3), 291–296. https://doi.org/10.2174/1381612824666180111110550

    Article  CAS  PubMed  Google Scholar 

  4. Talmud P.J., Holmes M.V. 2015. Deciphering the causal role of sPLA2s and Lp-PLA2 in coronary heart disease. Arterioscler. Thromb. Vasc. Biol.35 (11), 2281–2289. https://doi.org/10.1161/ATVBAHA.115.305234

    Article  CAS  PubMed  Google Scholar 

  5. Dore E., Boilard E. 2019. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids.1864 (6), 789–802. https://doi.org/10.1016/j.bbalip.2018.08.017

  6. Nikolaou A., Kokotou M.G., Vasilakaki S., Kokotos G. 2019. Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A2. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids.1864 (6), 941–956. https://doi.org/10.1016/j.bbalip.2018.08.009

  7. Zambelli V.O., Picolo G., Fernandes C.A.H., Fontes M.R.M., Cury Y. 2017. Secreted phospholipases A2 from animal venoms in pain and analgesia. Toxins.9 (12), 406. https://doi.org/10.3390/toxins9120406

    Article  CAS  PubMed Central  Google Scholar 

  8. Scott D., White S., Otwinowski Z., Yuan W., Gelb M., Sigler P. 1990. Interfacial catalysis: The mechanism of phospholipase A2. Science.250 (4987), 1541–1546. https://doi.org/10.1126/science.2274785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winget J.M., Pan Y.H., Bahnson B.J. 2006. The interfacial binding surface of phospholipase A2s. Biochim. Biophys. Acta.1761 (11), 1260–1269. https://doi.org/10.1016/j.bbalip.2006.08.002

  10. Berg O.G., Gelb M.H., Tsai M.-D., Jain M.K. 2001. Interfacial enzymology: The secreted phospholipase A2-paradigm. Chem. Rev.101 (9), 2613–2654. https://doi.org/10.1021/cr990139w

    Article  CAS  PubMed  Google Scholar 

  11. Nevalainen T.J., Eerola L.I., Rintala E., Laine V.J., Lambeau G., Gelb M.H. 2005. Time-resolved fluoroimmunoassays of the complete set of secreted phospholipases A2 in human serum. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids.1733 (2–3), 210–223. https://doi.org/10.1016/j.bbalip.2004.12.012

  12. Macdonald D.J., Boyle R. M., Glen A.C.A., Leslie C.C., Glen A.I.M., Horrobin D.F. 2015. The development of an ELISA for group IVA phospholipase A2 in human red blood cells. Prostaglandins, Leukotrienes and Essential Fatty Acids.94, 43–48. https://doi.org/10.1016/j.plefa.2014.11.003

    Article  CAS  Google Scholar 

  13. Topbas C., Swick A., Razavi M., Anderson N.L., Pearson T.W., Bystrom C. 2018. Measurement of lipoprotein-associated phospholipase A2 by use of 3 different methods: Exploration of discordance between ELISA and activity assays. Clin. Chem.64 (4), 697–704. https://doi.org/10.1373/clinchem.2017.279752

    Article  CAS  PubMed  Google Scholar 

  14. Zhuo S., Wolfert R.L., Yuan C. 2017. Biochemical differences in the mass and activity tests of lipoprotein-associated phospholipase A 2 explain the discordance in results between the two assay methods. Clin. Biochem.50 (18), 1209–1215. https://doi.org/10.1016/j.clinbiochem.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  15. Šribar J., Križaj I. 2011. Secreted phospholipases A2 – Not just enzymes. Acta Chimica Slovenica.58 (4), 678–688.

    PubMed  Google Scholar 

  16. Donato L.J., Meeusen J. W., Callanan H., Saenger A.K., Jaffe A. S. 2016. Advantages of the lipoprotein-associated phospholipase A2 activity assay. Clin. Biochem. 49 (1–2), 172–175. https://doi.org/10.1016/j.clinbiochem.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  17. Ong W.Y., Farooqui T., Kokotos G., Farooqui A.A. 2015. Synthetic and natural inhibitors of phospholipases A2: Their importance for understanding and treatment of neurological disorders. ACS Chem. Neurosci. 6 (6), 814–831. https://doi.org/10.1021/acschemneuro.5b00073

    Article  CAS  PubMed  Google Scholar 

  18. Vaskovsky V.E., Kostetsky E.Y., Vasendin I.M. 1975. A universal reagent for phospholipid analysis. J. Chromatography A.114 (1), 129–141. https://doi.org/10.1016/S0021-9673(00)85249-8

    Article  CAS  Google Scholar 

  19. Alekseeva A.S., Tretiakova D.S., Chernikov V.P., Utkin Y.N., Molotkovsky J.G., Vodovozova E.L., Boldyrev I.A. 2017. Heterodimeric V. nikolskii phospholipases A2 induce aggregation of the lipid bilayer. Toxicon.133, 169–179. https://doi.org/10.1016/j.toxicon.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  20. chebb N.H., Falck D., Faber H., Hein E.-M., Karst U., Hayen H. 2009. Fast method for monitoring phospholipase A2 activity by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatography A. 1216 (27), 5249–5255. 10.1016/j.chroma.2009.05.02

    Article  CAS  Google Scholar 

  21. Stephenson D.J., MacKnight H.P., Hoeferlin L.A., Park M.A., Allegood J.C., Cardona C.L., Chalfant C.E. 2019. A rapid and adaptable lipidomics method for quantitative UPLC-mass spectrometric analysis of phosphatidylethanolamine and phosphatidylcholine in vitro, and in cells. Anal. Methods.11 (13), 1765–1776. https://doi.org/10.1039/C9AY00052F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan G., Tian Y., Addy M., Cheng Y., Xie Q., Zhang B., Liu Y., Chen P., Ruan R. 2017. Structural analysis of phosphatidylcholine using a thin layer chromatography-based method. Eur. J. Lipid Sci. Technol.119 (7), 1600282. https://doi.org/10.1002/ejlt.201600282

    Article  CAS  Google Scholar 

  23. Leslie C.C., Gelb M.H. 2004. Assaying phospholipase A2 activity. Methods Mol. Biol. (Clifton, N.J.).284, 229–242.

    CAS  Google Scholar 

  24. Petrovic N., Grove C., Langton P.E., Misso N.L.A., Thompson P.J. 2001. A simple assay for a human serum phospholipase A2 that is associated with high-density lipoproteins. J. Lipid Research.42 (10), 1706–1713.

    CAS  Google Scholar 

  25. Eba C., Okano A., Nakano H., Iwasaki Y. 2014. A chromogenic substrate for solid-phase detection of phospholipase A2. Analyt. Biochem.447 (1), 43–45. https://doi.org/10.1016/j.ab.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  26. Cerelli M.J., Grimm K., Duan X., Mulberg E., Jalilie M., Sekella P., Payes M., Cox H., Blick K.E., Fang K.C., Zychlinsky E. 2016. Evaluation of recombinant enzyme calibration to harmonize lipoprotein-associated phospholipase A 2 activity results between instruments. Clin. Biochem. 49 (6), 480–485. https://doi.org/10.1016/j.clinbiochem.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  27. Alekseeva A.S., Korotaeva A.A., Samoilova E.V., Volynsky P.E., Vodovozova E.L., Boldyrev I.A. 2014. Secretory phospholipase A2 activity in blood serum: The challenge to sense. Biochem. Biophys. Res. Commun.454 (1), 178–182. https://doi.org/10.1016/j.bbrc.2014.10.069

    Article  CAS  PubMed  Google Scholar 

  28. Benson M.A., Schmalzer K.M., Frank D.W. 2010. A sensitive fluorescence-based assay for the detection of ExoU-mediated PLA2 activity. Clinica Chimica Acta.411 (3–4), 190–197. https://doi.org/10.1016/j.cca.2009.10.025

    Article  CAS  Google Scholar 

  29. Currò M., Ferlazzo N., Risitano R., Condello S., Vecchio M., Caccamo D., Ientile, R. 2014. Transglutaminase 2 and phospholipase A2 interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids.46 (3), 759–766. https://doi.org/10.1007/s00726-013-1569-y

    Article  CAS  PubMed  Google Scholar 

  30. Machado-Aranda D., Wang Z., Yu B., Suresh M.V., Notter R.H., Raghavendran K. 2013. Increased phospholipase A2 and lyso-phosphatidylcholine levels are associated with surfactant dysfunction in lung contusion injury in mice. Surgery.153 (1), 25–35. https://doi.org/10.1016/j.surg.2012.05.043

    Article  PubMed  Google Scholar 

  31. Abe A., Rzepecki P.W., Shayman J.A. 2013. A fluorogenic phospholipid for the detection of lysosomal phospholipase A2 activity. Analyt. Biochem.434 (1), 78–83. https://doi.org/10.1016/j.ab.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Wichmann O., Gelb M.H., Schultz C. 2007. Probing phospholipase A2 with fluorescent phospholipid substrates. ChemBioChem.8 (13), 1555–1569. https://doi.org/10.1002/cbic.200600462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Popov A.V., Mawn T.M., Kim S., Zheng G., Delikatny E.J. 2010. Design and synthesis of phospholipase C and A 2 -activatable near-infrared fluorescent smart probes. Bioconjug. Chem.21 (10), 1724–1727. https://doi.org/10.1021/bc100271v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maity G., Bhattacharyya D. 2005. Assay of snake venom phospholipase A2 using scattering mode of a spectrofluorimeter. Curr. Sci.89 (6), 1004–1008.

    Google Scholar 

  35. Horton K.L., Stewart K.M., Fonseca S.B., Guo Q., Kelley S.O. 2008. Mitochondria-penetrating peptides. Chem. Biol.15 (4), 375–382. https://doi.org/10.1016/j.chembiol.2008.03.015

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y., Cheng D., Lin I.-H., Abbott N.L., Jiang H. 2012. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions. Lab on a Chip.12 (19), 3746–3753. https://doi.org/10.1039/c2lc40462a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang C., Zhou L., Liu Y., Lai L. 2006. A continuous fluorescence assay for phospholipase A2 with nontagged lipid. Analyt. Biochem.351 (1), 11–17. https://doi.org/10.1016/j.ab.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  38. Radvanyi F., Jordan L., Russo-Marie F., Bon C. 1989. A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Analyt. Biochem. 177 (1), 103–109. https://doi.org/10.1016/0003-2697(89)90022-5

    Article  CAS  PubMed  Google Scholar 

  39. Mallat Z., Steg P.G., Benessiano J., Tanguy M.L., Fox K.A., Collet J.P., Dabbous O.H., Henry P., Carruthers K.F., Dauphin A., Arguelles C.S., Masliah J., Hugel B., Montalescot G., Freyssinet J., Asselain B., Tedgui A. 2005. Circulating secretory phospholipase A2 activity predicts recurrent events in patients with severe acute coronary syndromes. J. Am. Coll. Cardiol.46 (7), 1249–1257. https://doi.org/10.1016/j.jacc.2005.06.056

    Article  CAS  PubMed  Google Scholar 

  40. Mallat Z., Benessiano J., Simon T., Ederhy S., Sebella-Arguelles C., Cohen A., Huart V., Wareham N., Luben R., Khaw K., Tedgui A., Boekholdt M. 2007. Circulating secretory phospholipase A2 activity and risk of incident coronary events in healthy men and women: The EPIC-NORFOLK study. Arteriosclerosis, Thrombosis and Vascular Biology. 27 (5), 1177–1183. https://doi.org/10.1161/ATVBAHA.107.139352

    Article  CAS  Google Scholar 

  41. Tabaei S.R., Rabe M., Zetterberg H., Zhdanov V.P., Höök F. 2013. single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid. J. Amer. Chem. Soc.135 (38), 14151–14158. https://doi.org/10.1021/ja4046313

    Article  CAS  Google Scholar 

  42. Alekseeva A.S., Tretiakova D.S., Melnikova D.N., Molotkovsky U.G., Boldyrev I.A. 2016. Novel fluorescent membrane probe 2,3;5,6-bis(cyclohexyl)-BODIPY-labeled phosphatidylcholine. Russ. J. Bioorgan. Chem.42 (3), 305–309. https://doi.org/10.1134/S1068162016030031

    Article  CAS  Google Scholar 

  43. Tretiakova D.S., Alekseeva A.S., Galimzyanov T.R., Boldyrev A.M., Chernyadyev A.Y., Ermakov Y.A., Batishchev O.V., Vodovozova E.L., Boldyrev I.A. 2018. Lateral stress profile and fluorescent lipid probes. FRET pair of probes that introduces minimal distortions into lipid packing. Biochim. Biophys. Acta, Biomembr.1860 (11), 2337–2347. https://doi.org/10.1016/j.bbamem.2018.05.020

  44. Tretiakova D., Onishchenko N., Boldyrev I., Mikhalyov I., Tuzikov A., Bovin N., Evtushenko E., Vodovozova E. 2018. Influence of stabilizing components on the integrity of antitumor liposomes loaded with lipophilic prodrug in the bilayer. Colloids Surf. B, Biointerfaces.166, 45–53. https://doi.org/10.1016/j.colsurfb.2018.02.061

    Article  CAS  PubMed  Google Scholar 

  45. Liu X.-Y., Nakamura C., Yang Q., Miyake J. 2001. Phospholipase A2-catalyzed membrane leakage studied by immobilized liposome chromatography with online fluorescent detection. Analyt. Biochemistry.293 (2), 251–257. https://doi.org/10.1006/abio.2001.5136

    Article  CAS  Google Scholar 

  46. Liu X.-Y., Nakamura C., Hasegawa M., Miyake J. 2003. Effect of lipid composition on phospholipase A2-catalyzed membrane leakage in immobilized liposomes: Sensitization for polychlorinated biphenyls detection with antibody affinity column tandem with fluorescent liposome column. Electrophoresis.24 (18), 3165–3171. https://doi.org/10.1002/elps.200305530

    Article  CAS  PubMed  Google Scholar 

  47. Liu X.-Y., Nakamura C., Nakamura N., Hirano T., Shinbo T., Miyake J. 2005. Detection of polychlorinated biphenyls using an antibody column in tandem with a fluorescent liposome column. J. Chromatography A.1087 (1–2), 229–235. https://doi.org/10.1016/j.chroma.2005.03.013

    Article  CAS  Google Scholar 

  48. Chen H., Lim S.K., Chen P., Huang J., Wang Y., Palaniappan A., Platt M., Leidberg B., Tok A. 2015. Reporter-encapsulated liposomes on graphene field effect transistors for signal enhanced detection of physiological enzymes. Phys. Chem. Chem. Phys.17 (5), 3451–3456. https://doi.org/10.1039/C4CP04644G

    Article  CAS  PubMed  Google Scholar 

  49. Li J., Zhang Y., Ai J., Gao Q., Qi H., Zhang C., Cheng Z. 2016. Quantum dot cluster (QDC)-loaded phospholipid micelles as a FRET probe for phospholipase A2 detection. RSC Advances.6 (19), 15 895–15 899. https://doi.org/10.1039/C5RA25292J

    Article  CAS  Google Scholar 

  50. Chen S.-H., Hsu Y.-P., Lu H.-Y., Ho J.A. 2014. Gold/Phospholipid nanoconstructs as label-free optical probes for evaluating phospholipase A2 activity. Biosensors and Bioelectronics.52, 202–208. https://doi.org/10.1016/j.bios.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  51. Guo C., Zhang Y., Li Y., Xu S., Wang L. 2019. 19F MRI nanoprobes for the turn-on detection of phospholipase A2 with a low background. Analyt. Chem.91 (13), 8147–8153. https://doi.org/10.1021/acs.analchem.9b00435

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no. 19-75-00101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Boldyrev.

Ethics declarations

The authors declare that they have no conflict of interests.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, A.S., Boldyrev, I.A. Phospholipase A2. Methods for Activity Monitoring. Biochem. Moscow Suppl. Ser. A 14, 267–278 (2020). https://doi.org/10.1134/S1990747820040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820040030

Keywords:

Navigation