Skip to main content
Log in

Sources of Sediment Clasts and Depositional Environment of Sedimentary Rocks of the Daur Series of the Argun Continental Massif

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This paper presents the results of geochemical and isotope-geochemical (Sm–Nd) studies of the Upper Riphean (?) (in the Stratigraphic Scale of Russia) sedimentary rocks of the Urulungui and Dyrbylkei formations of the Daur Series in the Argun continental massif, as well as U–Th–Pb and Lu–Hf isotope studies of detrital zircons from these formations. Rocks of the Urulungui and Dyrbylkei formations differ significantly in their mineral composition and major-element composition, which is probably related to the degree of chemical weathering of source rocks. Analysis of the trace-element concentrations in the sedimentary rocks of the Urulungui and Dyrbylkei formations enabled us to establish that they were formed in a subduction-related setting. The presence of conglobreccias, conglomerates, gravelstones, fragments of igneous and volcanic rocks, the low level of roundness of clastic material, as well as the abundant Neoproterozoic detrital zircons in the formations, are evidence for tectonic and igneous activities in the region during sedimentation. Sedimentary rocks of the Urulungui and Dyrbylkei formations have two-stage Nd model ages of TNd(DM2) = 2.0–2.1 Ga and 1.6–1.8 Ga, respectively. The abundant Neoproterozoic zircons in sandstones of the Urulungui and Dyrbylkei formations suggest that Neoproterozoic igneous rocks that were widely developed within the western Argun continental massif were the main source of clastic materials. At the same time, the presence of Early Precambrian detrital zircons indicates that Early Precambrian rocks were also present in the source area. However, reliably dated Early Precambrian igneous and metamorphic rock associations have not yet been found within the Argun continental massif. Thus, it is possible that the rocks of the Daur Series form an “exotic block” involved in the Argun massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. E. V. Bibikova, T. V. Gracheva, V. A. Makarov, and V. S. Vorob’ev, “Geochronological frontiers for the southern part of Eastern Transbaikalia: U-Pb geochronological data,” Geochemistry International, No. 2, 204–215 (1979).

    Google Scholar 

  2. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  3. Geological Structure of the Chita Region: Explanatory Note to the Geological Map. 1 : 500 000 (Chita, 1997) [in Russian].

  4. V. N. Golubev, I. V. Chernyshev, A. B. Kotov, E. B. Sal’nikova, Yu. V. Gol’tsman, E. D. Bairova, and S. Z. Yakovleva, “The Strel’tsovka uranium district: isotopic geochronological (U–Pb, Rb–Sr, Sm–Nd) characterization of granitoids and their place in the formation history of uranium deposits,” Geol. Ore Deposits 52 (6), 496–513 (2010).

  5. S. K. Kozyrev and Yu. R. Volkova, State Geological Map of RF. 1 : 200 000. 2nd Edition. Zeya Series. Sheet N-51-XXIV (Magdagachi), Ed. by V. E. Chepygin (VSEGEI, St. Petersburg, 2001) [in Russian].

  6. A. B. Kotov, A. A. Sorokin, E. B. Sal’nikova, A. P. Sorokin, A. M. Larin, S. D. Velikoslavinskii, T. V. Belyakov, I. V. Anisimova, and S. Z. Yakovleva, “Mesozoic age of granitoids from the Beket Complex (Gonzha Block within the Argun Terrane of the Central-Asian Fold Belt),” Dokl. Earth Sci. 429 (6), 1457–1461 (2009).

  7. A. B. Kotov, A. M. Mazukabzov, T. M. Skovitina, S. D. Velikoslavinskii, A. A. Sorokin, and A. P. Sorokin, “Structural evolution and geodynamic position of the Gonzha Block, Upper Amur Region,” Geotectonics 47 (5), 351–361 (2013).

  8. A. F. Ozerskii and E. L. Vinnichenko, State Geological Map of the Russian Federation. 1 : 200 000. Argun Series. Sheet M-50-XVII. 2nd Edition, Ed. by V. V. Starchenko (VSEGEI, St. Petersburg, 2002) [in Russian].

  9. R. O. Ovchinnikov, A. A. Sorokin, A. B. Kotov, E. B. Sal’nikova, V. P. Kovach, and A. P. Sorokin, “The exotic Inim Block of the Argun Superterrane of the Central Asian Fold Belt: results of U–Th–Pb geochronological (LA-ICP-MS) and Sm–Nd isotopic–geochemical studies,” Dokl. Earth Sci. 484, 151–155 (2019).

  10. N. N. Petruk and S. A. Kozlov, State Geological Map of the Russian Federation. 1 : 1 000 000. Sheet N-51 (Skovorodino). 3rd Edition. Far East Series, Ed. by A. S. Vol’skii (VSEGEI, St. Petersburg, 2009) [in Russian].

  11. F. J. Pettijohn, R. Potter, and R. Siever, Sand and Sandstone (Springer, Heidelberg, 1972).

    Google Scholar 

  12. Resolution of 4th Interdisciplinary Regional Stratigraphic Conference on Precambrian and Phanerozoic of Southern Far East and Eastern Transbaikalia. A Set of Schemes (KhGGGP, Khabarovsk, 1994) [in Russian].

  13. E. B. Sal’nikova, A. B. Kotov, V. P. Kovach, S. D. Velikoslavinskii, B.-M. Jahn, A. A. Sorokin, A. P. Sorokin, K.-L. Wang, S.-L. Chung, and E. V. Tolmacheva, “Age of the Gonzha Series (Argun Terrane, Central Asian Fold Belt) inferred from U–Pb and Lu–Hf zircon data,” Dokl. Earth Sci. 444 (2), 692–695 (2012).

  14. A. N. Serezhnikov and Yu. R. Volkova, State Geological Map of the Russian Federation. 1 : 1 000 000. 3rd Generation. Sheet N-52 (Zeya). Far East Series, Ed. by A. S. Vol’skii (VSEGEI, St. Petersburg, 2007) [in Russian].

  15. Yu. N. Smirnova, A. A. Sorokin, A. B. Kotov, and V. P. Kovach, “Sources of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs of the eastern part of the Central Asian Fold Belt: results of Sm-Nd isotopic–geochemical and U-Pb (LA-ICP-MS) geochronological studies,” Dokl. Earth Sci. 465 (2), 1224–1228 (2015).

  16. Yu. N. Smirnova, A. A. Sorokin, and L. I. Popeko, “Geochemical features, depositional settings, and provenances of Lower Paleozoic rocks in the Mamyn Terrane, Central Asian Fold Belt,” Lithol. Miner. Resour. 51 (6), 500–517 (2016).

  17. Yu. N. Smirnova, A. A. Sorokin, L. I. Popeko, A. B. Kotov, V. P. Kovach, “Geochemistry and provenances of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs, eastern Central Asian Fold Belt,” Geochem. Int. 55 (2), 163—183 (2017).

  18. Yu. N. Smirnova and A. A. Sorokin, “Age and depositional settings of the Ordovician Chalovskaya Series in the Argun Massif, eastern part of the Central Asian Fold Belt,” Stratigraphy. Geol. Correlation, 27 (3), 277–296 (2019).

  19. A. A. Sorokin, N. M. Kudryashov, Li Jinyi, D. Z. Zhuravlev, Yan Pin, Sun Guihua, and Gao Liming, “Early Paleozoic granitoids in the eastern margin of the Argun Terrane, Amur Area: first geochemical and geochronologic data,” Petrology 12 (4), 367–376 (2004).

  20. A. A. Sorokin, A. B. Kotov, V. P. Kovach, V. A. Ponomarchuk, and V. M. Savatenkov, “Sources of the Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent,” Petrology 22 (1), 65–76 (2014).

  21. A. A. Sorokin, Yu. V. Smirnov, A. B. Kotov, E. B. Sal’nikova, A. P. Sorokin, V. P. Kovach, S. Z. Yadkovleva, and I. V. Anisimova, “Early Paleozoic age of the Isagachi Sequence (Chalaya Series, Gonzha Terrane) in the eastern part of the Central Asian Fold Belt,” Dokl. Earth Sci. 457, 810–813 (2014).

  22. A. A. Sorokin, Yu. N. Smirnova, A. B. Kotov, V. P. Kovach, E. B. Sal’nikova, and L. I. Popeko, “Provenances of the Paleozoic terrigenous sequences of the Oldoi Terrane of the Central Asian Orogenic Belt: Sm–Nd isotope geochemistry and U–Pb geochronology (LA–ICP–MS),” Geochem. Int. 53 (6), 534–544 (2015).

  23. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985) .

    Google Scholar 

  24. E. A. Shivokhin, A. F. Ozerskii, A. V. Kurilenko, N. I. Raitina, and V. V. Karasev, State Geological Map of the Russian Federation. 1 : 1 000 000. Aldan–Transbaikalian Series. Sheet M-50. 3rd Generation, Ed. by V. V. Starchenko (VSEGEI, St. Petersburg, 2010) [in Russian].

  25. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  26. H. Bahlburg and N. Dobrzinski, “A review of the chemical index of alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions,” Geol. Soc. London, Spec. Publ. 36, 81–92 (2011). https://doi.org/10.1144/M36.6

  27. M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986). https://doi.org/10.1007/BF00375292

  28. J. Blichert-Toft and F. Albarede, “The Lu−Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system,” Earth Planet. Sci. Lett. 148 (1–2), 243–258 (1997). https://doi.org/10.1016/S0012-821X(97)00040-X

  29. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191 (4), 305–327 (2002). https://doi.org/10.1016/S0009-2541(02)00133-X

  30. P. A. Floyd and B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones,” J. Geol. Soc. London. 144 (4), pp. 531–542 (1987). https://doi.org/10.1144/gsjgs.144.4.0531

  31. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution,” Earth and Planet Sci. Lett. 87, 249–265 (1988). https://doi.org/10.1016/0012-821X(88)90013-1

  32. W. L. Griffin, E. A. Belousova, S. R. Shee, N. J. Pearson, S. Y. O’Reilly, “Archean crustal evolution in the Northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons,” Precambrian Res. 131 (3–4), 231–282 (2004). https://doi.org/10.1016/j.precamres.2003.12.011

  33. L. Harnois, “The CIW index: a new chemical index of weathering,” Sediment. Geol. 55 (3–4), 319—322 (1988). https://doi.org/10.1016/0037-0738(88)90137-6

  34. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Petrol. 58 (5), 820–829 (1988). https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

  35. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd isotopic evolution of chondrites and achondrites, II,” Earth Planet. Sci. Lett. 67, 137–150 (1984). https://doi.org/10.1016/0012-821X(84)90109-2

  36. K. R. Ludwig, “Isoplot 3.6. A geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ., No. 4, 1–77 (2008).

  37. A. Makishima, B. Nagender, and E. Nakamura, “New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS,” Geochem. J. 42, 237–246 (2008). https://doi.org/10.2343/geochemj.42.237

  38. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

  39. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982). https://doi.org/10.1038/299715a0

  40. A. Parker, “An index of weathering for silicate rocks,” Geol. Mag. 107 (6), 501–504 (1970). https://doi.org/10.1017/S0016756800058581

  41. C. Pin, D. Briot, C. Bassin, and F. Poitrasson, “Concominant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography,” Anal. Chim. Acta 298, 209–217 (1994). https://doi.org/10.1016/0003-2670(94)00274-6

  42. P. Richard, N. Shimizu, and C. J. Allègre, “143Nd/146Nd, a natural tracer: an application to oceanic basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976). https://doi.org/10.1016/0012-821X(76)90219-3

  43. U. Söderlund, P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, “The 176Lu decay constant determined by Lu−Hf and U−Pb isotope systematics of Precambrian mafic intrusions,” Earth Planet. Sci. Lett. 219 (3–4), 311–324 (2004). https://doi.org/10.1016/S0012-821X(04)00012-3

  44. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu, and C. Dragusanu, “JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium,” Chem. Geol. 168, 279–281 (2000). https://doi.org/10.1016/S0009-2541(00)00198-4

  45. J. Tang, W. L. Xu, F. Wang, W. Wang, M. J. Xu, Y. H. Zhang, “Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia Supercontinent,” Precambrian Res. 224, 597–611 (2013). https://doi.org/10.1016/J.PRECAMRES.2012.10.019

  46. J. D. Vervoort and P. J. Patchett, “Behavior of hafnium and neodymium isotopes in the crust: constraints from precambrian crustally derived granites,” Geochim. Cosmochim. Acta 60 (19), 3717–3723 (1996). https://doi.org/10.1016/0016-7037(96)00201-3

  47. D. J. Wronkiewicz and K. C. Condie, “Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance,” Geochim. Cosmochim. Acta 51 (9), 2401–2416 (1987). https://doi.org/10.1016/0016-7037(87)90293-6

  48. F. Y. Wu, D. Y. Sun, W. C. Ge, Y. B. Zhang, M. L. Grant, S. A. Wilde, B. M. Jahn, “Geochronology of the Phanerozoic granitoids in northeastern China,” J. Asian Earth Sci. 41 (1), 1–30 (2011). https://doi.org/10.1016/j.jseaes.2010.11.014

  49. Y. H. Yang, Z. Y. Chu, F. Y. Wu, L. W. Xia, and J. H. Yang, “Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS,” J. Anal. At. Spectrom. 26, 1237−1244 (2011). https://doi.org/10.1039/c1ja00001b

  50. J. B. Zhou, S. A. Wilde, X. Z. Zhang, S. M. Ren, and C. Q. Zheng, “Early Paleozoic metamorphic rocks of the Erguna Block in the Great Xing’an Range, NE China: evidence for the timing of magmatic and metamorphic events and their tectonic implications,” Tectonophysics 499 (1–4), 105–117 (2011). https://doi.org/10.1016/j.tecto.2010.12.009

Download references

ACKNOWLEDGMENTS

We are grateful to staff of the Analytical Center of the Institute of Geology and Nature Management of the Far Eastern Branch of the Russian Academy of Sciences (E.N. Voropaeva, O.G. Medvedeva, A.I. Palazhchenko, V.I. Rozhdestvina, E.S. Sapozhnik, and E.V. Ushakova), Kosygin Institute of Tectonics and Geophysics of the Far Eastern Branch of the Russian Academy of Sciences (V.E. Zazulina, E.M. Golubeva, and A. V. Shtareva), and LaserChron Center of the Arizona University (United States) for the performance of analytical studies. We also are grateful to the reviewers for constructive comments and discussion.

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 20-05-00195, 18-05-00840).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Smirnova or S. I. Dril.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by A.A. Sorokin

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, Y.N., Ovchinnikov, R.O., Smirnov, Y.V. et al. Sources of Sediment Clasts and Depositional Environment of Sedimentary Rocks of the Daur Series of the Argun Continental Massif. Russ. J. of Pac. Geol. 16, 11–28 (2022). https://doi.org/10.1134/S1819714022010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714022010092

Keywords:

Navigation