Skip to main content
Log in

Composites based on liquid-crystalline polymers with terminal functional groups and inorganic nanoparticles

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

A method of controlled radical polymerization via the reversible addition fragmentation chain transfer mechanism is used to synthesize LC polymers with functional terminal thiol groups. These polymers are used to create composites containing gold nanoparticles at a concentration of up to 40 wt % and capable of LC ordering. The structural, thermodynamic, and optical properties of the composites are studied. It is shown that the spatial separation of mesogenic groups and groups responsible for the binding of a macromolecule with nanoparticles makes it possible to considerably widen the concentration range of nanoparticles while preserving the LC state of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Paquet and E. Kumacheva, Mater. Today 11 (4), 48 (2008).

    Article  CAS  Google Scholar 

  2. H. Zhang, Y. Liu, D. Yao, and B. Yang, Chem. Soc. Rev. 41 (18), 6066 (2012).

    Article  CAS  Google Scholar 

  3. V. A. Gerasin, E. M. Antipov, V. V. Karbushev, V. G. Kulichikhin, G. P. Karpacheva, R. V. Talroze, and Y. V. Kudryavtsev, Russ. Chem. Rev. 82 (43), 303 (2013).

    Article  Google Scholar 

  4. S. Rangelov and S. Pispas, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications (CRC Press, Boca Raton, 2014).

    Google Scholar 

  5. M. A. Hood, M. Mari, and R. Muñoz-Espi, Materials 7 (5), 4057 (2014).

    Article  CAS  Google Scholar 

  6. R. V. Talroze, A. S. Merekalov, A. M. Shatalova, O. A. Otmakhova, and G. A. Shandryuk, in Liquid Crystalline Polymers, Ed. by V. K. Thakur and M. R. Kessler (Springer, New York, 2015), Vol. 2, Chap. 15.

    Google Scholar 

  7. E. B. Barmatov, D. A. Pebalk, and M. V. Barmatova, Langmuir 20 (25), 10868 (2005).

    Article  Google Scholar 

  8. G. A. Shandryuk, A. V. Rebrov, R. B. Vasiliev, S. G. Dorofeev, A. S. Merekalov, A. M. Gas’kov, and R. V. Talroze, Polym. Sci., Ser. B 47 (9–10), 266 (2005).

    Google Scholar 

  9. G. A. Shandryuk, E. V. Matukhina, R. Vasiliev, A. V. Rebrov, G. N. Bondarenko, A. S. Merekalov, A. M. Gaskov, and R. V. Talroze, Macromolecules 41 (6), 2178 (2008).

    Article  CAS  Google Scholar 

  10. A. Bobrovskiy, K. Mochalov, V. Oleinikov, A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev, and I. Nabiev, Adv. Mater. 24 (46), 6216 (2012).

    Article  Google Scholar 

  11. S. G. Lukishova, L. J. Bissell, J. Winkler, and C. R. Stroud, Opt. Lett. 37 (7), 1259 (2012).

    Article  Google Scholar 

  12. G. I. Tselikov, V. Y. Timoshenko, J. Plenge, E. Ruehl, A. M. Shatalova, G. A. Shandryuk, A. S. Merekalov, and R. V. Talroze, Semiconductors 47 (5), 647 (2013).

    Article  CAS  Google Scholar 

  13. G. I. Tselikov, V. Yu. Timoshenko, L. A. Golovan’, J. Plenge, A. M. Shatalova, G. A. Shandryuk, I. Yu. Kutergina, A. S. Merekalov, E. Ruehl, and R. V. Talroze, ChemPhysChem 16 (5), 1071 (2015).

    Article  CAS  Google Scholar 

  14. X. Hao, J. P. A. Heuts, C. Barner-Kowollik, T. P. Davies, and E. Evans, J. Polym. Sci., Part A: Polym. Chem. 41 (19), 2949 (2003).

    Article  CAS  Google Scholar 

  15. C. Barner-Kowollik, T. P. Davis, J. P. A. Heuts, M. H. Stenzel, P. Vana, and M. Whittaker, J. Polym. Sci., Part A: Polym. Chem. 41 (3), 365 (2003).

    Article  CAS  Google Scholar 

  16. Y. Zhao, B. Qi, X. Tong, and Y. Zhao, Macromolecules 41 (11), 3823 (2008).

    Article  CAS  Google Scholar 

  17. P. Das, W. Zhong, and J. P. Claverie, Colloid. Polym. Sci. 289 (14), 1519 (2011).

    Article  CAS  Google Scholar 

  18. M. G. Ivanov, N. I. Boiko, E. V. Chernikova, R. Richardson, X. -M. Zhu, and V. P. Shibaev, Polym. Sci., Ser. A 53 (8), 633 (2011).

    Article  CAS  Google Scholar 

  19. M. A. Bugakov, N. I. Boiko, E. V. Chernikova, and V. P. Shibaev, Polym. Sci., Ser. B 55 (5), 294 (2013).

    Article  CAS  Google Scholar 

  20. D. Miyamoto, M. Oishi, K. Kojima, K. Yoshimoto, and Y. Nagasaki, Langmuir 24 (9), 5010 (2008).

    Article  CAS  Google Scholar 

  21. C. Boyer, M. R. Whittaker, M. Luzon, and T. P. Davis, Macromolecules 42 (18), 6917 (2009).

    Article  CAS  Google Scholar 

  22. S. Luo, J. Xu, Y. Zhang, S. Liu, and C. Wu, J. Phys. Chem. B 109 (47), 22159 (2005).

    Article  CAS  Google Scholar 

  23. C. Boyer, M. R. Whittaker, K. Chuah, J. Liu, and T. P. Davis, Langmuir 26 (4), 2721 (2010).

    Article  CAS  Google Scholar 

  24. K. Wei, J. Li, J. Liu, G. Chen, and M. Jiang, Soft Matter 8, 3300 (2012).

    Article  CAS  Google Scholar 

  25. E. R. Zubarev, J. Xu, A. Sayyad, and J. D. Gibson, J. Am. Chem. Soc. 128 (15), 4958 (2006).

    Article  CAS  Google Scholar 

  26. B. Wang, B. Li, B. Zhao, and C. Y. Li, J. Am. Chem. Soc. 130 (35), 11594 (2008).

    Article  CAS  Google Scholar 

  27. J. He, Z. Wei, L. Wang, Z. Tomova, T. Babu, C. Wang, X. Han, J. T. Fourkas, and Z. Nie, Angew. Chem., Int. Ed. 52 (9), 2463 (2013).

    Article  CAS  Google Scholar 

  28. C. T. Nguyen, T. H. Tran, X. Lu, and R. M. Kasi, Polym. Chem. 5, 2774 (2014).

    Article  CAS  Google Scholar 

  29. J. Shan, M. Nuopponen, H. Jiang, T. Viitala, E. Kauppinen, K. Kontturi, and H. Tenhu, Macromolecules 38 (7), 2918 (2005).

    Article  CAS  Google Scholar 

  30. S. G. Jang, E. J. Kramer, and C. J. Hawker, J. Am. Chem. Soc. 133 (42), 16986 (2011).

    Article  CAS  Google Scholar 

  31. J. Gao, Y. Sun, J. Zhou, Z. Zheng, H. Chen, W. Su, and Q. Zhang, J. Polym. Sci., Part A: Polym. Chem. 45, 5380 (2007).

    Article  CAS  Google Scholar 

  32. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media LLC, New York, 2007).

    Google Scholar 

  33. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci. 28 (5), 729 (2003).

    Article  CAS  Google Scholar 

  34. A. M. Shatalova, I. Yu. Kutergina, Ya. I. Derikov, G. A. Shandryuk, R. V. Talroze, Polym. Sci., Ser. B 54 (11–12), 533 (2012).

    Article  CAS  Google Scholar 

  35. A. B. Lowe, B. S. Sumerlin, M. S. Donovan, and C. L. McCormick, J. Am. Chem. Soc. 124, 11562 (2002).

    Article  CAS  Google Scholar 

  36. B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, and C. L. McCormick, Langmuir 19, 5559 (2003).

    Article  CAS  Google Scholar 

  37. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc., Chem. Commun. 1 (7), 801 (1994).

    Article  Google Scholar 

  38. S. Khatua, P. Manna, W.-S. Chang, A. Tcherniak, E. Friedlander, E. R. Zubarev, and S. Link, J. Phys. Chem. C 114, 7251 (2010).

    Article  CAS  Google Scholar 

  39. A. E. Saunders, M. B. Jr. Sigman, and B. A. Korgel, J. Phys. Chem. B 108 (28), 193 (2004).

    Article  CAS  Google Scholar 

  40. R. Azzam and H. Bashara, Ellipsometry and Polarized light (Elsevier, Amsterdam, 1977).

  41. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).

    Book  Google Scholar 

  42. J. Schellman and H. P. Jensen, Chem. Rev. 87 (6), 1359 (1987).

    Article  CAS  Google Scholar 

  43. Yu. A. Pentin and L. V. Vilkov, Physical Methods of Investigation in Chemistry (Mir, Moscow, 2006) [in Russian].

    Google Scholar 

  44. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, Data for Biochemical Research (Clarendon Press, Oxford, 1989).

    Google Scholar 

  45. E. Kretschmann, Opt. Commun. 6 (2), 185 (1972).

    Article  Google Scholar 

  46. N. L. Allinger, J. Am. Chem. Soc. 99 (25), 8127 (1977).

    Article  CAS  Google Scholar 

  47. G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem. 65, 985 (2012).

    Article  CAS  Google Scholar 

  48. Handbook of RAFT Polymerization, Ed. by C.Barner-Kowollik (Wiley, Weinheim, 2008).

  49. P. A. Ledin, N. Kolishetti, and G. J. Boons, Macromolecules 46 (19), 7759 (2013).

    Article  CAS  Google Scholar 

  50. A. B. Lowe, B. S. Sumerlin, M. S. Donovan, and C. L. McCormick, J. Am. Chem. Soc. 124 (39), 11562 (2002).

    Article  CAS  Google Scholar 

  51. B. S. Sumerlin, A. B. Lowe, P. A. Stroud, P. Zhang, M. W. Urban, and C. L. McCormick, Langmuir 19 (14), 5559 (2003).

    Article  CAS  Google Scholar 

  52. C. W. Scales, A. J. Convertine, and C. L. McCormick, Biomacromolecules 7 (5), 1389 (2006).

    Article  CAS  Google Scholar 

  53. R. A. Sperling and W. J. Parak, Philos. Trans. R. Soc., A 368, 1333 (2010).

    Article  CAS  Google Scholar 

  54. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105 (4), 1103 (2005).

    Article  CAS  Google Scholar 

  55. H. Hinterwirth, S. Kappel, T. Waitz, T. Prohaska, W. Lindner, and M. Lammerhofer, ACS Nano 7 (2), 1129 (2013).

    Article  CAS  Google Scholar 

  56. A. A. Ezhov, Ya. I. Derikov, E. V. Chernikova, S. S. Abramchuk, G. A. Shandryuk, A. S. Merekalov, V. I. Panov, and R. V. Talroze, Polymer 77, 113 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ezhov.

Additional information

Original Russian Text © A.A. Ezhov, Ya.I. Derikov, G.A. Shandryuk, E.V. Chernikova, S.S. Abramchyuk, A.S. Merekalov, G.N. Bondarenko, R.V. Tal’roze, 2016, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2016, Vol. 58, No. 1, pp. 112–127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhov, A.A., Derikov, Y.I., Shandryuk, G.A. et al. Composites based on liquid-crystalline polymers with terminal functional groups and inorganic nanoparticles. Polym. Sci. Ser. C 58, 102–117 (2016). https://doi.org/10.1134/S1811238216010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238216010033

Navigation