Skip to main content
Log in

Isophorone Diisocyanate and Trimethylolpropane in-situ Prepared Hydroxyl-Terminated Block Copolymer Binder with Excellent Mechanical Properties

  • SYNTHESIS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A novel hydroxyl-terminated block copolymer (ITPP) binder was prepared through an in-situ preparation method. The new binder having similar block structure as HTPE binder, without complex synthesis process to prepare HTPE prepolymer intermediate, reduces cost and optimizes the preparation process. Thus, it is expected to be used as binder of insensitive propellant. Infrared spectroscopy, low-field nuclear magnetic resonance, and uniaxial tensile testing were used to investigate the curing networks and mechanical properties of the binder. The crosslink density Ve increased with the increase of TMP content and R value. The ultimate tensile strength σm of the in-situ-prepared ITPP binder is 20.50 MPa and the percentage of breaking elongation εb is 743.47%. Additionally, in order to study the pot life of the in-situ-prepared ITPP binder, the rheological properties of the curing reactions were also studied. Finally, compared to HTPE binder, the in-situ-prepared ITPP binder’s strength and elongation increase by 694 and 276%, respectively. Besides, the in-situ-prepared ITPP binder has better process performance. This exciting result greatly enhances that the in-situ-prepared ITPP binder has great potential for application in rocket propellant formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Q. F. Zhang and J. Q. Zhang, Energ. Mater. 12, 371 (2004).

    CAS  Google Scholar 

  2. K. O. Hartman and T. F. Comfort, in Proceedings of Insensitive Munitions and Energetic Materials Technology Symposium. Bristol,1996 (Bristol, 1996).

  3. X. Q. Song, J. Y. Zhou, W. H. Wang, and X. H. Li, Chin. J. Energ. Mater. 16, 349 (2008).

    CAS  Google Scholar 

  4. D. Q. Yan, D. D. Xu, and J. G. Shi, J. Solid Rocket Technol. 32, 644 (2009).

    CAS  Google Scholar 

  5. W. B. Zhang, X. D. Fang, X. Z. Zhu, and W. W. Fan, J. Solid Rocket Technol. 2, 251 (2015).

    Google Scholar 

  6. C. D. Wang, Y. J. Luo, and M. Xia, Chin. J. Energ. Mater. 19, 518 (2011).

    CAS  Google Scholar 

  7. F. Kai, D. Tokerud, H. Biserod, E. Orbekk, S. Tenden, M. Kaiserman, M. Rodack, W. Spate, S. Winetrobe, B. Royce, and S. Wallace, in Proceedings of AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ, USA, 2005 (Tucson, AZ, 2005), p. 4172.

  8. M. Kaiserman, M. Rodack, W. Spate, S. Winetrobe, B. Royce, S. Wallace, H. Biserod, K. Fossumstuen, and D. Tokerud, in Proceedings of AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ, USA, 2005 (Tucson, AZ, 2005), p. 4171.

  9. A. F. Zhang, H. Z. Zhang, H. C. Yang, and X. D. Zhang, Chin. Sci. Bull. 35, 1881 (1990).

    CAS  Google Scholar 

  10. J. F. Neumer, US Patent No. 5 254 744 (1993).

  11. G. Pruckmayr and R. B. Osborne, US Patent No. 5 284 980 (1994).

  12. P. Holmqvist, A. A. Paschalis, and B. Lindman, Langmuir 13, 2471 (1997).

    Article  CAS  Google Scholar 

  13. J. R. Goleniewski and J. A. Roberts, US Patent No. 5 783 769 (1998).

  14. R. A. Barcock and R. J. Hobson, US Patent No. 5 773 207 (1998).

  15. I. C. De Witte and E. J. Goethals, Polym. Adv. Technol. 10, 287 (1999).

    Article  CAS  Google Scholar 

  16. C. Pomel, C. Leborgne, H. Cheradame, D. Scherman, A. Kichler, and P. Guegan, Pharm. Res. 12, 2963 (2008).

    Article  Google Scholar 

  17. L. G. Niu, R. Nagarajan, F. X. Guan, L. A. Samuelson, and J. Kumar, J Macromol. Sci., Part A: Pure Appl. Chem. 43, 1975 (2006).

    Article  CAS  Google Scholar 

  18. K. K. Chen, X. M. Wen, G. P. Li, S. P. Pang, and Y. J. Luo, RSC Adv. 10, 30150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Garbarczyk, F. Grinberg, and N. Nestle, J. Polym. Sci., Part B: Polym. Phys. 39, 2207 (2001).

    Article  CAS  Google Scholar 

  20. F. Zhao, P. Zhang, and S. G. Zhao, KGK Rubberpoint 5, 224 (2008).

    Google Scholar 

  21. W. Kuhn, E. Peregi, and Z. Fei, Mater. Res. Soc. Symp. Proc. 217, 33 (1991).

    Article  CAS  Google Scholar 

  22. E. Fried, J. Mech. Phys. Solids 50, 571 (2002).

    Article  CAS  Google Scholar 

  23. K. Z. Mao, S. Ma, and Y. J. Luo, Chin. J. Energ. Mater. 23, 941 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Luo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue Zhao, Chen, K. & Luo, Y. Isophorone Diisocyanate and Trimethylolpropane in-situ Prepared Hydroxyl-Terminated Block Copolymer Binder with Excellent Mechanical Properties. Polym. Sci. Ser. B 64, 382–392 (2022). https://doi.org/10.1134/S1560090422700117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700117

Navigation